Long Short-Term Memory Neural Network for Financial Time Series
- URL: http://arxiv.org/abs/2201.08218v1
- Date: Thu, 20 Jan 2022 15:17:26 GMT
- Title: Long Short-Term Memory Neural Network for Financial Time Series
- Authors: Carmina Fjellstr\"om
- Abstract summary: We present an ensemble of independent and parallel long short-term memory neural networks for the prediction of stock price movement.
With a straightforward trading strategy, comparisons with a randomly chosen portfolio and a portfolio containing all the stocks in the index show that the portfolio resulting from the LSTM ensemble provides better average daily returns and higher cumulative returns over time.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Performance forecasting is an age-old problem in economics and finance.
Recently, developments in machine learning and neural networks have given rise
to non-linear time series models that provide modern and promising alternatives
to traditional methods of analysis. In this paper, we present an ensemble of
independent and parallel long short-term memory (LSTM) neural networks for the
prediction of stock price movement. LSTMs have been shown to be especially
suited for time series data due to their ability to incorporate past
information, while neural network ensembles have been found to reduce
variability in results and improve generalization. A binary classification
problem based on the median of returns is used, and the ensemble's forecast
depends on a threshold value, which is the minimum number of LSTMs required to
agree upon the result. The model is applied to the constituents of the smaller,
less efficient Stockholm OMX30 instead of other major market indices such as
the DJIA and S&P500 commonly found in literature. With a straightforward
trading strategy, comparisons with a randomly chosen portfolio and a portfolio
containing all the stocks in the index show that the portfolio resulting from
the LSTM ensemble provides better average daily returns and higher cumulative
returns over time. Moreover, the LSTM portfolio also exhibits less volatility,
leading to higher risk-return ratios.
Related papers
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
This paper introduces BreakGPT, a novel large language model (LLM) architecture adapted specifically for time series forecasting and the prediction of sharp upward movements in asset prices.
We showcase BreakGPT as a promising solution for financial forecasting with minimal training and as a strong competitor for capturing both local and global temporal dependencies.
arXiv Detail & Related papers (2024-11-09T05:40:32Z) - ResNLS: An Improved Model for Stock Price Forecasting [1.2039469573641217]
We introduce a hybrid model that improves stock price prediction by emphasizing the dependencies between adjacent stock prices.
In predicting the SSE Composite Index, our experiment reveals that when the closing price data for the previous 5 consecutive trading days is used as the input, the performance of the model (ResNLS-5) is optimal.
It also demonstrates at least a 20% improvement over the current state-of-the-art baselines.
arXiv Detail & Related papers (2023-12-02T03:55:37Z) - 1D-CapsNet-LSTM: A Deep Learning-Based Model for Multi-Step Stock Index
Forecasting [6.05458608266581]
This study investigates the potential of integrating a 1D CapsNet with an LSTM network for multi-step stock index forecasting.
To this end, a hybrid 1D-CapsNet-LSTM model is introduced, which utilizes a 1D CapsNet to generate high-level capsules.
The proposed 1D-CapsNet-LSTM model consistently outperforms baseline models in two key aspects.
arXiv Detail & Related papers (2023-10-03T14:33:34Z) - Stock Price Prediction Using Temporal Graph Model with Value Chain Data [3.1641827542160805]
We introduce a neural network-based stock return prediction method, the Long Short-Term Memory Graph Convolutional Neural Network (LSTM-GCN) model.
Our experiments demonstrate that the LSTM-GCN model can capture additional information from value chain data that are not fully reflected in price data.
arXiv Detail & Related papers (2023-03-07T17:24:04Z) - Augmented Bilinear Network for Incremental Multi-Stock Time-Series
Classification [83.23129279407271]
We propose a method to efficiently retain the knowledge available in a neural network pre-trained on a set of securities.
In our method, the prior knowledge encoded in a pre-trained neural network is maintained by keeping existing connections fixed.
This knowledge is adjusted for the new securities by a set of augmented connections, which are optimized using the new data.
arXiv Detail & Related papers (2022-07-23T18:54:10Z) - Bilinear Input Normalization for Neural Networks in Financial
Forecasting [101.89872650510074]
We propose a novel data-driven normalization method for deep neural networks that handle high-frequency financial time-series.
The proposed normalization scheme takes into account the bimodal characteristic of financial time-series.
Our experiments, conducted with state-of-the-arts neural networks and high-frequency data, show significant improvements over other normalization techniques.
arXiv Detail & Related papers (2021-09-01T07:52:03Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
Deep learning models have led to significant performance improvements in many problems coming from different domains, including prediction problems of financial time-series data.
The Temporal Attention-Augmented Bilinear network was recently proposed as an efficient and high-performing model for Limit Order Book time-series forecasting.
In this paper, we propose a low-rank tensor approximation of the model to further reduce the number of trainable parameters and increase its speed.
arXiv Detail & Related papers (2021-07-05T10:15:23Z) - Prediction of financial time series using LSTM and data denoising
methods [0.29923891863939933]
This paper proposes an ensemble method based on data denoising methods, including the wavelet transform (WT) and singular spectrum analysis (SSA)
As WT and SSA can extract useful information from the original sequence and avoid overfitting, the hybrid model can better grasp the sequence pattern of the closing price of the DJIA.
arXiv Detail & Related papers (2021-03-05T07:32:36Z) - HiPPO: Recurrent Memory with Optimal Polynomial Projections [93.3537706398653]
We introduce a general framework (HiPPO) for the online compression of continuous signals and discrete time series by projection onto bases.
Given a measure that specifies the importance of each time step in the past, HiPPO produces an optimal solution to a natural online function approximation problem.
This formal framework yields a new memory update mechanism (HiPPO-LegS) that scales through time to remember all history, avoiding priors on the timescale.
arXiv Detail & Related papers (2020-08-17T23:39:33Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.