ResNLS: An Improved Model for Stock Price Forecasting
- URL: http://arxiv.org/abs/2312.01020v1
- Date: Sat, 2 Dec 2023 03:55:37 GMT
- Title: ResNLS: An Improved Model for Stock Price Forecasting
- Authors: Yuanzhe Jia, Ali Anaissi, Basem Suleiman
- Abstract summary: We introduce a hybrid model that improves stock price prediction by emphasizing the dependencies between adjacent stock prices.
In predicting the SSE Composite Index, our experiment reveals that when the closing price data for the previous 5 consecutive trading days is used as the input, the performance of the model (ResNLS-5) is optimal.
It also demonstrates at least a 20% improvement over the current state-of-the-art baselines.
- Score: 1.2039469573641217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stock prices forecasting has always been a challenging task. Although many
research projects adopt machine learning and deep learning algorithms to
address the problem, few of them pay attention to the varying degrees of
dependencies between stock prices. In this paper we introduce a hybrid model
that improves stock price prediction by emphasizing the dependencies between
adjacent stock prices. The proposed model, ResNLS, is mainly composed of two
neural architectures, ResNet and LSTM. ResNet serves as a feature extractor to
identify dependencies between stock prices across time windows, while LSTM
analyses the initial time-series data with the combination of dependencies
which considered as residuals. In predicting the SSE Composite Index, our
experiment reveals that when the closing price data for the previous 5
consecutive trading days is used as the input, the performance of the model
(ResNLS-5) is optimal compared to those with other inputs. Furthermore,
ResNLS-5 outperforms vanilla CNN, RNN, LSTM, and BiLSTM models in terms of
prediction accuracy. It also demonstrates at least a 20% improvement over the
current state-of-the-art baselines. To verify whether ResNLS-5 can help clients
effectively avoid risks and earn profits in the stock market, we construct a
quantitative trading framework for back testing. The experimental results show
that the trading strategy based on predictions from ResNLS-5 can successfully
mitigate losses during declining stock prices and generate profits in the
periods of rising stock prices.
Related papers
- Gated recurrent neural network with TPE Bayesian optimization for enhancing stock index prediction accuracy [0.0]
The aim is to improve the prediction accuracy of the next day's closing price of the NIFTY 50 index, a prominent Indian stock market index.
A combination of eight influential factors is carefully chosen from fundamental stock data, technical indicators, crude oil price, and macroeconomic data to train the models.
arXiv Detail & Related papers (2024-06-02T06:39:01Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Revisiting Out-of-distribution Robustness in NLP: Benchmark, Analysis,
and LLMs Evaluations [111.88727295707454]
This paper reexamines the research on out-of-distribution (OOD) robustness in the field of NLP.
We propose a benchmark construction protocol that ensures clear differentiation and challenging distribution shifts.
We conduct experiments on pre-trained language models for analysis and evaluation of OOD robustness.
arXiv Detail & Related papers (2023-06-07T17:47:03Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Stock Price Prediction Using Temporal Graph Model with Value Chain Data [3.1641827542160805]
We introduce a neural network-based stock return prediction method, the Long Short-Term Memory Graph Convolutional Neural Network (LSTM-GCN) model.
Our experiments demonstrate that the LSTM-GCN model can capture additional information from value chain data that are not fully reflected in price data.
arXiv Detail & Related papers (2023-03-07T17:24:04Z) - Augmented Bilinear Network for Incremental Multi-Stock Time-Series
Classification [83.23129279407271]
We propose a method to efficiently retain the knowledge available in a neural network pre-trained on a set of securities.
In our method, the prior knowledge encoded in a pre-trained neural network is maintained by keeping existing connections fixed.
This knowledge is adjusted for the new securities by a set of augmented connections, which are optimized using the new data.
arXiv Detail & Related papers (2022-07-23T18:54:10Z) - Long Short-Term Memory Neural Network for Financial Time Series [0.0]
We present an ensemble of independent and parallel long short-term memory neural networks for the prediction of stock price movement.
With a straightforward trading strategy, comparisons with a randomly chosen portfolio and a portfolio containing all the stocks in the index show that the portfolio resulting from the LSTM ensemble provides better average daily returns and higher cumulative returns over time.
arXiv Detail & Related papers (2022-01-20T15:17:26Z) - Robust Analysis of Stock Price Time Series Using CNN and LSTM-Based Deep
Learning Models [0.0]
We present a suite of deep learning-based regression models that yields a very high level of accuracy in stock price prediction.
We build four convolutional neural network (CNN) and five long- and short-term memory (LSTM)-based deep learning models for accurate forecasting of the future stock prices.
arXiv Detail & Related papers (2020-11-07T16:07:10Z) - Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction
with Representation Learning and Temporal Convolutional Network [71.25144476293507]
We have proposed to develop a global hybrid deep learning framework to predict the daily prices in the stock market.
With representation learning, we derived an embedding called Stock2Vec, which gives us insight for the relationship among different stocks.
Our hybrid framework integrates both advantages and achieves better performance on the stock price prediction task than several popular benchmarked models.
arXiv Detail & Related papers (2020-09-29T22:54:30Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.