1D-CapsNet-LSTM: A Deep Learning-Based Model for Multi-Step Stock Index
Forecasting
- URL: http://arxiv.org/abs/2310.02090v2
- Date: Thu, 2 Nov 2023 15:49:00 GMT
- Title: 1D-CapsNet-LSTM: A Deep Learning-Based Model for Multi-Step Stock Index
Forecasting
- Authors: Cheng Zhang, Nilam Nur Amir Sjarif, Roslina Ibrahim
- Abstract summary: This study investigates the potential of integrating a 1D CapsNet with an LSTM network for multi-step stock index forecasting.
To this end, a hybrid 1D-CapsNet-LSTM model is introduced, which utilizes a 1D CapsNet to generate high-level capsules.
The proposed 1D-CapsNet-LSTM model consistently outperforms baseline models in two key aspects.
- Score: 6.05458608266581
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multi-step stock index forecasting is vital in finance for informed
decision-making. Current forecasting methods on this task frequently produce
unsatisfactory results due to the inherent data randomness and instability,
thereby underscoring the demand for advanced forecasting models. Given the
superiority of capsule network (CapsNet) over CNN in various forecasting and
classification tasks, this study investigates the potential of integrating a 1D
CapsNet with an LSTM network for multi-step stock index forecasting. To this
end, a hybrid 1D-CapsNet-LSTM model is introduced, which utilizes a 1D CapsNet
to generate high-level capsules from sequential data and a LSTM network to
capture temporal dependencies. To maintain stochastic dependencies over
different forecasting horizons, a multi-input multi-output (MIMO) strategy is
employed. The model's performance is evaluated on real-world stock market
indices, including S&P 500, DJIA, IXIC, and NYSE, and compared to baseline
models, including LSTM, RNN, and CNN-LSTM, using metrics such as RMSE, MAE,
MAPE, and TIC. The proposed 1D-CapsNet-LSTM model consistently outperforms
baseline models in two key aspects. It exhibits significant reductions in
forecasting errors compared to baseline models. Furthermore, it displays a
slower rate of error increase with lengthening forecast horizons, indicating
increased robustness for multi-step forecasting tasks.
Related papers
- Variational Mode Decomposition and Linear Embeddings are What You Need For Time-Series Forecasting [2.1233286062376497]
Variational Mode Decomposition (VMD) has emerged as a promising technique to mitigate volatility by decomposing data into distinct modes.
In this study, we integrate VMD with linear models to develop a robust forecasting framework.
arXiv Detail & Related papers (2024-08-28T20:22:09Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
We propose an effective method called Latent Semantic Consensus (LSC)
LSC formulates the model fitting problem into two latent semantic spaces based on data points and model hypotheses.
LSC is able to provide consistent and reliable solutions within only a few milliseconds for general multi-structural model fitting.
arXiv Detail & Related papers (2024-03-11T05:35:38Z) - Long Short-Term Memory Neural Network for Financial Time Series [0.0]
We present an ensemble of independent and parallel long short-term memory neural networks for the prediction of stock price movement.
With a straightforward trading strategy, comparisons with a randomly chosen portfolio and a portfolio containing all the stocks in the index show that the portfolio resulting from the LSTM ensemble provides better average daily returns and higher cumulative returns over time.
arXiv Detail & Related papers (2022-01-20T15:17:26Z) - ES-dRNN: A Hybrid Exponential Smoothing and Dilated Recurrent Neural
Network Model for Short-Term Load Forecasting [1.4502611532302039]
Short-term load forecasting (STLF) is challenging due to complex time series (TS)
This paper proposes a novel hybrid hierarchical deep learning model that deals with multiple seasonality.
It combines exponential smoothing (ES) and a recurrent neural network (RNN)
arXiv Detail & Related papers (2021-12-05T19:38:42Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - Learning representations with end-to-end models for improved remaining
useful life prognostics [64.80885001058572]
The remaining Useful Life (RUL) of equipment is defined as the duration between the current time and its failure.
We propose an end-to-end deep learning model based on multi-layer perceptron and long short-term memory layers (LSTM) to predict the RUL.
We will discuss how the proposed end-to-end model is able to achieve such good results and compare it to other deep learning and state-of-the-art methods.
arXiv Detail & Related papers (2021-04-11T16:45:18Z) - Deep Learning Based on Generative Adversarial and Convolutional Neural
Networks for Financial Time Series Predictions [0.0]
This paper proposes the implementation of a generative adversarial network (GAN), which is composed by a bi-directional Long short-term memory (LSTM) and convolutional neural network(CNN)
Bi-LSTM-CNN generates synthetic data that agree with existing real financial data so the features of stocks with positive or negative trends can be retained to predict future trends of a stock.
arXiv Detail & Related papers (2020-08-08T08:42:46Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z) - Stacked Bidirectional and Unidirectional LSTM Recurrent Neural Network
for Forecasting Network-wide Traffic State with Missing Values [23.504633202965376]
We focus on RNN-based models and attempt to reformulate the way to incorporate RNN and its variants into traffic prediction models.
A stacked bidirectional and unidirectional LSTM network architecture (SBU-LSTM) is proposed to assist the design of neural network structures for traffic state forecasting.
We also propose a data imputation mechanism in the LSTM structure (LSTM-I) by designing an imputation unit to infer missing values and assist traffic prediction.
arXiv Detail & Related papers (2020-05-24T00:17:15Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.