Cross-Domain Few-Shot Graph Classification
- URL: http://arxiv.org/abs/2201.08265v1
- Date: Thu, 20 Jan 2022 16:16:30 GMT
- Title: Cross-Domain Few-Shot Graph Classification
- Authors: Kaveh Hassani
- Abstract summary: We study the problem of few-shot graph classification across domains with nonequivalent feature spaces.
We propose an attention-based graph encoder that uses three congruent views of graphs, one contextual and two topological views.
We show that when coupled with metric-based meta-learning frameworks, the proposed encoder achieves the best average meta-test classification accuracy.
- Score: 7.23389716633927
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of few-shot graph classification across domains with
nonequivalent feature spaces by introducing three new cross-domain benchmarks
constructed from publicly available datasets. We also propose an
attention-based graph encoder that uses three congruent views of graphs, one
contextual and two topological views, to learn representations of task-specific
information for fast adaptation, and task-agnostic information for knowledge
transfer. We run exhaustive experiments to evaluate the performance of
contrastive and meta-learning strategies. We show that when coupled with
metric-based meta-learning frameworks, the proposed encoder achieves the best
average meta-test classification accuracy across all benchmarks. The source
code and data will be released here: https://github.com/kavehhassani/metagrl
Related papers
- Multi-Label Meta Weighting for Long-Tailed Dynamic Scene Graph
Generation [55.429541407920304]
Recognizing the predicate between subject and object pairs is imbalanced and multi-label in nature.
Recent state-of-the-art methods predominantly focus on the most frequently occurring predicate classes.
We introduce a multi-label meta-learning framework to deal with the biased predicate distribution.
arXiv Detail & Related papers (2023-06-16T18:14:23Z) - A Simple and Scalable Graph Neural Network for Large Directed Graphs [11.792826520370774]
We investigate various combinations of node representations and edge direction awareness within an input graph.
In response, we propose a simple yet holistic classification method A2DUG.
We demonstrate that A2DUG stably performs well on various datasets and improves the accuracy up to 11.29 compared with the state-of-the-art methods.
arXiv Detail & Related papers (2023-06-14T06:24:58Z) - Bures-Wasserstein Means of Graphs [60.42414991820453]
We propose a novel framework for defining a graph mean via embeddings in the space of smooth graph signal distributions.
By finding a mean in this embedding space, we can recover a mean graph that preserves structural information.
We establish the existence and uniqueness of the novel graph mean, and provide an iterative algorithm for computing it.
arXiv Detail & Related papers (2023-05-31T11:04:53Z) - A Comprehensive Analytical Survey on Unsupervised and Semi-Supervised
Graph Representation Learning Methods [4.486285347896372]
This survey aims to evaluate all major classes of graph embedding methods.
We organized graph embedding techniques using a taxonomy that includes methods from manual feature engineering, matrix factorization, shallow neural networks, and deep graph convolutional networks.
We designed experiments on top of PyTorch Geometric and DGL libraries and run experiments on different multicore CPU and GPU platforms.
arXiv Detail & Related papers (2021-12-20T07:50:26Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
This paper proposes a novel Structure-Aware Heterogeneous Graph Neural Network (SHGNN) to address the above limitations.
We first utilize a feature propagation module to capture the local structure information of intermediate nodes in the meta-path.
Next, we use a tree-attention aggregator to incorporate the graph structure information into the aggregation module on the meta-path.
Finally, we leverage a meta-path aggregator to fuse the information aggregated from different meta-paths.
arXiv Detail & Related papers (2021-12-12T14:18:18Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
We propose a joint emphgraph learning and matching network, named GLAM, to explore reliable graph structures for boosting graph matching.
The proposed method is evaluated on three popular visual matching benchmarks (Pascal VOC, Willow Object and SPair-71k)
It outperforms previous state-of-the-art graph matching methods by significant margins on all benchmarks.
arXiv Detail & Related papers (2021-09-01T08:24:02Z) - Structure-Enhanced Meta-Learning For Few-Shot Graph Classification [53.54066611743269]
This work explores the potential of metric-based meta-learning for solving few-shot graph classification.
An implementation upon GIN, named SMFGIN, is tested on two datasets, Chembl and TRIANGLES.
arXiv Detail & Related papers (2021-03-05T09:03:03Z) - Pseudoinverse Graph Convolutional Networks: Fast Filters Tailored for
Large Eigengaps of Dense Graphs and Hypergraphs [0.0]
Graph Convolutional Networks (GCNs) have proven to be successful tools for semi-supervised classification on graph-based datasets.
We propose a new GCN variant whose three-part filter space is targeted at dense graphs.
arXiv Detail & Related papers (2020-08-03T08:48:41Z) - Heuristic Semi-Supervised Learning for Graph Generation Inspired by
Electoral College [80.67842220664231]
We propose a novel pre-processing technique, namely ELectoral COllege (ELCO), which automatically expands new nodes and edges to refine the label similarity within a dense subgraph.
In all setups tested, our method boosts the average score of base models by a large margin of 4.7 points, as well as consistently outperforms the state-of-the-art.
arXiv Detail & Related papers (2020-06-10T14:48:48Z) - Adaptive-Step Graph Meta-Learner for Few-Shot Graph Classification [25.883839335786025]
We propose a novel framework consisting of a graph meta-learner, which uses GNNs based modules for fast adaptation on graph data.
Our framework gets state-of-the-art results on several few-shot graph classification tasks compared to baselines.
arXiv Detail & Related papers (2020-03-18T14:38:48Z) - Adaptive Graph Convolutional Network with Attention Graph Clustering for
Co-saliency Detection [35.23956785670788]
We present a novel adaptive graph convolutional network with attention graph clustering (GCAGC)
We develop an attention graph clustering algorithm to discriminate the common objects from all the salient foreground objects in an unsupervised fashion.
We evaluate our proposed GCAGC method on three cosaliency detection benchmark datasets.
arXiv Detail & Related papers (2020-03-13T09:35:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.