Adaptive Graph Convolutional Network with Attention Graph Clustering for
Co-saliency Detection
- URL: http://arxiv.org/abs/2003.06167v1
- Date: Fri, 13 Mar 2020 09:35:59 GMT
- Title: Adaptive Graph Convolutional Network with Attention Graph Clustering for
Co-saliency Detection
- Authors: Kaihua Zhang, Tengpeng Li, Shiwen Shen, Bo Liu, Jin Chen, Qingshan Liu
- Abstract summary: We present a novel adaptive graph convolutional network with attention graph clustering (GCAGC)
We develop an attention graph clustering algorithm to discriminate the common objects from all the salient foreground objects in an unsupervised fashion.
We evaluate our proposed GCAGC method on three cosaliency detection benchmark datasets.
- Score: 35.23956785670788
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Co-saliency detection aims to discover the common and salient foregrounds
from a group of relevant images. For this task, we present a novel adaptive
graph convolutional network with attention graph clustering (GCAGC). Three
major contributions have been made, and are experimentally shown to have
substantial practical merits. First, we propose a graph convolutional network
design to extract information cues to characterize the intra- and interimage
correspondence. Second, we develop an attention graph clustering algorithm to
discriminate the common objects from all the salient foreground objects in an
unsupervised fashion. Third, we present a unified framework with
encoder-decoder structure to jointly train and optimize the graph convolutional
network, attention graph cluster, and co-saliency detection decoder in an
end-to-end manner. We evaluate our proposed GCAGC method on three cosaliency
detection benchmark datasets (iCoseg, Cosal2015 and COCO-SEG). Our GCAGC method
obtains significant improvements over the state-of-the-arts on most of them.
Related papers
- Contrastive Graph Condensation: Advancing Data Versatility through Self-Supervised Learning [47.74244053386216]
Graph condensation is a promising solution to synthesize a compact, substitute graph of the large-scale original graph.
We introduce Contrastive Graph Condensation (CTGC), which adopts a self-supervised surrogate task to extract critical, causal information from the original graph.
CTGC excels in handling various downstream tasks with a limited number of labels, consistently outperforming state-of-the-art GC methods.
arXiv Detail & Related papers (2024-11-26T03:01:22Z) - Node Classification via Semantic-Structural Attention-Enhanced Graph Convolutional Networks [0.9463895540925061]
We introduce the semantic-structural attention-enhanced graph convolutional network (SSA-GCN)
It not only models the graph structure but also extracts generalized unsupervised features to enhance classification performance.
Our experiments on the Cora and CiteSeer datasets demonstrate the performance improvements achieved by our proposed method.
arXiv Detail & Related papers (2024-03-24T06:28:54Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - Local Structure-aware Graph Contrastive Representation Learning [12.554113138406688]
We propose a Local Structure-aware Graph Contrastive representation Learning method (LS-GCL) to model the structural information of nodes from multiple views.
For the local view, the semantic subgraph of each target node is input into a shared GNN encoder to obtain the target node embeddings at the subgraph-level.
For the global view, considering the original graph preserves indispensable semantic information of nodes, we leverage the shared GNN encoder to learn the target node embeddings at the global graph-level.
arXiv Detail & Related papers (2023-08-07T03:23:46Z) - Towards Relation-centered Pooling and Convolution for Heterogeneous
Graph Learning Networks [11.421162988355146]
Heterogeneous graph neural network has unleashed great potential on graph representation learning.
We design a relation-centered Pooling and Convolution for Heterogeneous Graph learning Network, namely PC-HGN, to enable relation-specific sampling and cross-relation convolutions.
We evaluate the performance of the proposed model by comparing with state-of-the-art graph learning models on three different real-world datasets.
arXiv Detail & Related papers (2022-10-31T08:43:32Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
Graph Contrastive Learning (GCL) has shown promising performance in graph representation learning (GRL) without the supervision of manual annotations.
This paper proposes an effective graph complementary contrastive learning approach named GraphCoCo to tackle the above issue.
arXiv Detail & Related papers (2022-03-24T02:58:36Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
We propose a novel unsupervised graph representation model by contrasting cluster assignments, called as GRCCA.
It is motivated to make good use of local and global information synthetically through combining clustering algorithms and contrastive learning.
GRCCA has strong competitiveness in most tasks.
arXiv Detail & Related papers (2021-12-15T07:28:58Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Semi-supervised Hyperspectral Image Classification with Graph Clustering
Convolutional Networks [41.78245271989529]
We propose a graph convolution network (GCN) based framework for HSI classification.
In particular, we first cluster the pixels with similar spectral features into a superpixel and build the graph based on the superpixels of the input HSI.
We then partition it into several sub-graphs by pruning the edges with weak weights, so as to strengthen the correlations of nodes with high similarity.
arXiv Detail & Related papers (2020-12-20T14:16:59Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z) - Spectral Embedding of Graph Networks [76.27138343125985]
We introduce an unsupervised graph embedding that trades off local node similarity and connectivity, and global structure.
The embedding is based on a generalized graph Laplacian, whose eigenvectors compactly capture both network structure and neighborhood proximity in a single representation.
arXiv Detail & Related papers (2020-09-30T04:59:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.