Quantum dual-path interferometry scheme for axion dark matter searches
- URL: http://arxiv.org/abs/2201.08291v5
- Date: Mon, 19 Aug 2024 05:04:51 GMT
- Title: Quantum dual-path interferometry scheme for axion dark matter searches
- Authors: Qiaoli Yang, Yu Gao, Zhihui Peng,
- Abstract summary: We show that in a cavity permeated by a magnetic field, the single axion-photon conversion rate is enhanced by the cavity quality factor.
The axion cavity can be considered a quantum device emitting single photons with temporal separations.
- Score: 1.0636475069923585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exploring the mysterious dark matter is a key quest in modern physics. Currently, detecting axions, a hypothetical particle proposed as a primary component of dark matter, remains a significant challenge due to their weakly interacting nature. Here we show at quantum level that in a cavity permeated by a magnetic field, the single axion-photon conversion rate is enhanced by the cavity quality factor and is quantitatively larger than the classical result by $\pi/2$. The axion cavity can be considered a quantum device emitting single photons with temporal separations. This differs from the classical picture and reveals a possibility for the axion cavity experiment to handle the signal sensitivity at the quantum level, e.g., a dual path quantum interferometry with cross-power and second-order correlation measurements. This scheme would greatly reduce the signal scanning time and improve the sensitivity of the axion-photon coupling, potentially leading to the direct observation of axions.
Related papers
- Exploring Quantum Aspects of Dark Matter Axions and Dark Photons Transitions within a Resonant Cavity [0.5813063157177947]
We show that at the quantum level, single axion-photon transitions are amplified by the cavity's quality factor $Q$.
We also provide an analysis of the scenario involving dark photon dark matter.
arXiv Detail & Related papers (2024-10-16T14:54:30Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Violation of Bell inequality by photon scattering on a two-level emitter [4.810881229568956]
Entanglement, the non-local correlations present in quantum systems, is a curious feature of quantum mechanics and the fuel of quantum technology.
We show how a single two-level emitter deterministically coupled to light in a nanophotonic waveguide is used to realize genuine photonic quantum entanglement for excitation at the single photon level.
arXiv Detail & Related papers (2023-06-22T11:01:24Z) - Quantum Science and the Search for Axion Dark Matter [91.3755431537592]
The dark matter puzzle is one of the most important open problems in modern physics.
Numerous precision experiments are searching for the three non-gravitational interactions of axion-like dark matter.
arXiv Detail & Related papers (2023-04-24T02:52:56Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - A macroscopic delayed-choice quantum eraser using a commercial laser [0.0]
In quantum mechanics, quantum superposition is represented by probability amplitudes between mutually exclusive natures.
The delayed-choice quantum eraser is for the post-determination of the photon nature.
The macroscopic delayed-choice quantum eraser is experimentally demonstrated using a continuous wave laser.
arXiv Detail & Related papers (2022-05-28T06:45:13Z) - Detecting an Itinerant Optical Photon Twice without Destroying It [2.9316801942271304]
Two identical nondestructive photon detectors repeatedly detect and track a single photon propagating through a $60,mathrmm$ long optical fiber.
By demonstrating that the combined signal-to-noise ratio of the two detectors surpasses each single one by about two orders of magnitude, we experimentally verify a key practical benefit of cascaded non-demolition detectors.
arXiv Detail & Related papers (2021-05-29T18:48:31Z) - Revisiting self-interference in Young double-slit experiments [0.0]
Single photon self-interference has been intensively studied over the last several decades in both quantum and classical regimes.
This understanding sheds light on the fundamental physics of quantum features between bipartite systems.
arXiv Detail & Related papers (2021-04-16T10:02:44Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.