Training Hybrid Classical-Quantum Classifiers via Stochastic Variational
Optimization
- URL: http://arxiv.org/abs/2201.08629v1
- Date: Fri, 21 Jan 2022 10:30:24 GMT
- Title: Training Hybrid Classical-Quantum Classifiers via Stochastic Variational
Optimization
- Authors: Ivana Nikoloska, and Osvaldo Simeone
- Abstract summary: Quantum machine learning has emerged as a potential practical application of near-term quantum devices.
In this work, we study a two-layer hybrid classical-quantum classifier in which a first layer of quantum neurons implementing generalized linear models (QGLMs) is followed by a second classical combining layer.
Experiments show the advantages of the approach for a variety of activation functions implemented by QGLM neurons.
- Score: 32.562122826341266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum machine learning has emerged as a potential practical application of
near-term quantum devices. In this work, we study a two-layer hybrid
classical-quantum classifier in which a first layer of quantum stochastic
neurons implementing generalized linear models (QGLMs) is followed by a second
classical combining layer. The input to the first, hidden, layer is obtained
via amplitude encoding in order to leverage the exponential size of the fan-in
of the quantum neurons in the number of qubits per neuron. To facilitate
implementation of the QGLMs, all weights and activations are binary. While the
state of the art on training strategies for this class of models is limited to
exhaustive search and single-neuron perceptron-like bit-flip strategies, this
letter introduces a stochastic variational optimization approach that enables
the joint training of quantum and classical layers via stochastic gradient
descent. Experiments show the advantages of the approach for a variety of
activation functions implemented by QGLM neurons.
Related papers
- Non-binary artificial neuron with phase variation implemented on a quantum computer [0.0]
We introduce an algorithm that generalizes the binary model manipulating the phase of complex numbers.
We propose, test, and implement a neuron model that works with continuous values in a quantum computer.
arXiv Detail & Related papers (2024-10-30T18:18:53Z) - Adiabatic training for Variational Quantum Algorithms [0.4374837991804085]
This paper presents a new hybrid Quantum Machine Learning (QML) model composed of three elements.
Gate-based Quantum Computer running the Variational Quantum Algorithm (VQA) representing the Quantum Neural Network (QNN)
An adiabatic Quantum Computer where the optimization function is executed to find the best parameters for the VQA.
arXiv Detail & Related papers (2024-10-24T10:17:48Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach [0.0]
This research explores the integration of quantum computing with classical machine learning for image classification tasks.
We propose a hybrid quantum-classical approach that leverages the strengths of both paradigms.
The experimental results indicate that while the hybrid model demonstrates the feasibility of integrating quantum computing with classical techniques, the accuracy of the final model, trained on quantum outcomes, is currently lower than the classical model trained on compressed features.
arXiv Detail & Related papers (2024-08-05T22:16:27Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
We propose a new methodology to design quantum hybrid diffusion models.
We propose two possible hybridization schemes combining quantum computing's superior generalization with classical networks' modularity.
arXiv Detail & Related papers (2024-02-25T16:57:51Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Alternating Layered Variational Quantum Circuits Can Be Classically
Optimized Efficiently Using Classical Shadows [4.680722019621822]
Variational quantum algorithms (VQAs) are the quantum analog of classical neural networks (NNs)
We introduce a training algorithm with an exponential reduction in training cost of such VQAs.
arXiv Detail & Related papers (2022-08-24T15:47:44Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.