Object Detection in Aerial Images: What Improves the Accuracy?
- URL: http://arxiv.org/abs/2201.08763v1
- Date: Fri, 21 Jan 2022 16:22:48 GMT
- Title: Object Detection in Aerial Images: What Improves the Accuracy?
- Authors: Hashmat Shadab Malik, Ikboljon Sobirov, and Abdelrahman Mohamed
- Abstract summary: deep learning-based object detection approaches have been actively explored for the problem of object detection in aerial images.
In this work, we investigate the impact of Faster R-CNN for aerial object detection and explore numerous strategies to improve its performance for aerial images.
- Score: 9.857292888257144
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Object detection is a challenging and popular computer vision problem. The
problem is even more challenging in aerial images due to significant variation
in scale and viewpoint in a diverse set of object categories. Recently, deep
learning-based object detection approaches have been actively explored for the
problem of object detection in aerial images. In this work, we investigate the
impact of Faster R-CNN for aerial object detection and explore numerous
strategies to improve its performance for aerial images. We conduct extensive
experiments on the challenging iSAID dataset. The resulting adapted Faster
R-CNN obtains a significant mAP gain of 4.96% over its vanilla baseline
counterpart on the iSAID validation set, demonstrating the impact of different
strategies investigated in this work.
Related papers
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - FlightScope: A Deep Comprehensive Review of Aircraft Detection Algorithms in Satellite Imagery [2.9687381456164004]
This paper critically evaluates and compares a suite of advanced object detection algorithms customized for the task of identifying aircraft within satellite imagery.
This research encompasses an array of methodologies including YOLO versions 5 and 8, Faster RCNN, CenterNet, RetinaNet, RTMDet, and DETR, all trained from scratch.
YOLOv5 emerges as a robust solution for aerial object detection, underlining its importance through superior mean average precision, Recall, and Intersection over Union scores.
arXiv Detail & Related papers (2024-04-03T17:24:27Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - On the Robustness of Object Detection Models in Aerial Images [37.50307094643692]
We introduce two novel benchmarks based on DOTA-v1.0.
The first benchmark encompasses 19 prevalent corruptions, while the second focuses on cloud-corrupted images.
We find that enhanced model architectures, larger networks, well-crafted modules, and judicious data augmentation strategies collectively enhance the robustness of aerial object detection models.
arXiv Detail & Related papers (2023-08-29T15:16:51Z) - Aerial Image Object Detection With Vision Transformer Detector (ViTDet) [0.0]
Vision Transformer Detector (ViTDet) was proposed to extract multi-scale features for object detection.
ViTDet's simple design achieves good performance on natural scene images and can be easily embedded into any detector architecture.
Our results show that ViTDet can consistently outperform its convolutional neural network counterparts on horizontal bounding box (HBB) object detection.
arXiv Detail & Related papers (2023-01-28T02:25:30Z) - Fewer is More: Efficient Object Detection in Large Aerial Images [59.683235514193505]
This paper presents an Objectness Activation Network (OAN) to help detectors focus on fewer patches but achieve more efficient inference and more accurate results.
Using OAN, all five detectors acquire more than 30.0% speed-up on three large-scale aerial image datasets.
We extend our OAN to driving-scene object detection and 4K video object detection, boosting the detection speed by 112.1% and 75.0%, respectively.
arXiv Detail & Related papers (2022-12-26T12:49:47Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
We propose a Robust Detector (RobustDet) based on adversarially-aware convolution to disentangle gradients for model learning on clean and adversarial images.
Our model effectively disentangles gradients and significantly enhances the detection robustness with maintaining the detection ability on clean images.
arXiv Detail & Related papers (2022-07-13T13:59:59Z) - Investigating the Challenges of Class Imbalance and Scale Variation in
Object Detection in Aerial Images [0.0]
The variety in object scales and orientations can make them difficult to identify.
In this project, we propose a few changes to the Faster-RCNN architecture.
Our proposed design achieves an improvement of 4.7 mAP over the baseline.
arXiv Detail & Related papers (2022-02-05T04:48:33Z) - AdaZoom: Adaptive Zoom Network for Multi-Scale Object Detection in Large
Scenes [57.969186815591186]
Detection in large-scale scenes is a challenging problem due to small objects and extreme scale variation.
We propose a novel Adaptive Zoom (AdaZoom) network as a selective magnifier with flexible shape and focal length to adaptively zoom the focus regions for object detection.
arXiv Detail & Related papers (2021-06-19T03:30:22Z) - Object Detection in Aerial Images: A Large-Scale Benchmark and
Challenges [124.48654341780431]
We present a large-scale dataset of Object deTection in Aerial images (DOTA) and comprehensive baselines for ODAI.
The proposed DOTA dataset contains 1,793,658 object instances of 18 categories of oriented-bounding-box annotations collected from 11,268 aerial images.
We build baselines covering 10 state-of-the-art algorithms with over 70 configurations, where the speed and accuracy performances of each model have been evaluated.
arXiv Detail & Related papers (2021-02-24T11:20:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.