Investigating the Challenges of Class Imbalance and Scale Variation in
Object Detection in Aerial Images
- URL: http://arxiv.org/abs/2202.02489v1
- Date: Sat, 5 Feb 2022 04:48:33 GMT
- Title: Investigating the Challenges of Class Imbalance and Scale Variation in
Object Detection in Aerial Images
- Authors: Ahmed Elhagry, Mohamed Saeed
- Abstract summary: The variety in object scales and orientations can make them difficult to identify.
In this project, we propose a few changes to the Faster-RCNN architecture.
Our proposed design achieves an improvement of 4.7 mAP over the baseline.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While object detection is a common problem in computer vision, it is even
more challenging when dealing with aerial satellite images. The variety in
object scales and orientations can make them difficult to identify. In
addition, there can be large amounts of densely packed small objects such as
cars. In this project, we propose a few changes to the Faster-RCNN
architecture. First, we experiment with different backbones to extract better
features. We also modify the data augmentations and generated anchor sizes for
region proposals in order to better handle small objects. Finally, we
investigate the effects of different loss functions. Our proposed design
achieves an improvement of 4.7 mAP over the baseline which used a vanilla
Faster R-CNN with a ResNet-101 FPN backbone.
Related papers
- Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
We design a Knowledge Discovery Network (KDN) to implement the renormalization group theory in terms of efficient feature extraction.
Renormalized connection (RC) on the KDN enables synergistic focusing'' of multi-scale features.
RCs extend the multi-level feature's divide-and-conquer'' mechanism of the FPN-based detectors to a wide range of scale-preferred tasks.
arXiv Detail & Related papers (2024-09-09T13:56:22Z) - Visible and Clear: Finding Tiny Objects in Difference Map [50.54061010335082]
We introduce a self-reconstruction mechanism in the detection model, and discover the strong correlation between it and the tiny objects.
Specifically, we impose a reconstruction head in-between the neck of a detector, constructing a difference map of the reconstructed image and the input, which shows high sensitivity to tiny objects.
We further develop a Difference Map Guided Feature Enhancement (DGFE) module to make the tiny feature representation more clear.
arXiv Detail & Related papers (2024-05-18T12:22:26Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Adaptive Rotated Convolution for Rotated Object Detection [96.94590550217718]
We present Adaptive Rotated Convolution (ARC) module to handle rotated object detection problem.
In our ARC module, the convolution kernels rotate adaptively to extract object features with varying orientations in different images.
The proposed approach achieves state-of-the-art performance on the DOTA dataset with 81.77% mAP.
arXiv Detail & Related papers (2023-03-14T11:53:12Z) - Transformation-Invariant Network for Few-Shot Object Detection in Remote
Sensing Images [15.251042369061024]
Few-shot object detection (FSOD) relies on a large amount of labeled data for training.
Scale and orientation variations of objects in remote sensing images pose significant challenges to existing FSOD methods.
We propose integrating a feature pyramid network and utilizing prototype features to enhance query features.
arXiv Detail & Related papers (2023-03-13T02:21:38Z) - ARUBA: An Architecture-Agnostic Balanced Loss for Aerial Object
Detection [24.085715205081385]
We denote size of an object as the number of pixels it covers in an image and size imbalance as the over-representation of certain sizes of objects in a dataset.
We propose a novel ARchitectUre-agnostic BAlanced Loss (ARUBA) that can be applied as a plugin on top of any object detection model.
arXiv Detail & Related papers (2022-10-10T11:28:16Z) - Object Detection in Aerial Images with Uncertainty-Aware Graph Network [61.02591506040606]
We propose a novel uncertainty-aware object detection framework with a structured-graph, where nodes and edges are denoted by objects.
We refer to our model as Uncertainty-Aware Graph network for object DETection (UAGDet)
arXiv Detail & Related papers (2022-08-23T07:29:03Z) - Object Detection in Aerial Images: What Improves the Accuracy? [9.857292888257144]
deep learning-based object detection approaches have been actively explored for the problem of object detection in aerial images.
In this work, we investigate the impact of Faster R-CNN for aerial object detection and explore numerous strategies to improve its performance for aerial images.
arXiv Detail & Related papers (2022-01-21T16:22:48Z) - Concurrent Segmentation and Object Detection CNNs for Aircraft Detection
and Identification in Satellite Images [0.0]
We present a dedicated method to detect and identify aircraft, combining two very different convolutional neural networks (CNNs)
The results we present show that this combination outperforms significantly each unitary model, reducing drastically the false negative rate.
arXiv Detail & Related papers (2020-05-27T07:35:55Z) - PENet: Object Detection using Points Estimation in Aerial Images [9.33900415971554]
A novel network structure, Points Estimated Network (PENet), is proposed in this work to answer these challenges.
PENet uses a Mask Resampling Module (MRM) to augment the imbalanced datasets, a coarse anchor-free detector (CPEN) to effectively predict the center points of the small object clusters, and a fine anchor-free detector FPEN to locate the precise positions of the small objects.
Our experiments on aerial datasets visDrone and UAVDT showed that PENet achieved higher precision results than existing state-of-the-art approaches.
arXiv Detail & Related papers (2020-01-22T19:43:17Z) - NETNet: Neighbor Erasing and Transferring Network for Better Single Shot
Object Detection [170.30694322460045]
We propose a new Neighbor Erasing and Transferring (NET) mechanism to reconfigure the pyramid features and explore scale-aware features.
A single-shot network called NETNet is constructed for scale-aware object detection.
arXiv Detail & Related papers (2020-01-18T15:21:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.