Change Detection from Synthetic Aperture Radar Images via Graph-Based
Knowledge Supplement Network
- URL: http://arxiv.org/abs/2201.08954v1
- Date: Sat, 22 Jan 2022 02:50:50 GMT
- Title: Change Detection from Synthetic Aperture Radar Images via Graph-Based
Knowledge Supplement Network
- Authors: Junjie Wang, Feng Gao, Junyu Dong, Shan Zhang, Qian Du
- Abstract summary: We propose a Graph-based Knowledge Supplement Network (GKSNet) for image change detection.
To be more specific, we extract discriminative information from the existing labeled dataset as additional knowledge.
To validate the proposed method, we conducted extensive experiments on four SAR datasets.
- Score: 36.41983596642354
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Synthetic aperture radar (SAR) image change detection is a vital yet
challenging task in the field of remote sensing image analysis. Most previous
works adopt a self-supervised method which uses pseudo-labeled samples to guide
subsequent training and testing. However, deep networks commonly require many
high-quality samples for parameter optimization. The noise in pseudo-labels
inevitably affects the final change detection performance. To solve the
problem, we propose a Graph-based Knowledge Supplement Network (GKSNet). To be
more specific, we extract discriminative information from the existing labeled
dataset as additional knowledge, to suppress the adverse effects of noisy
samples to some extent. Afterwards, we design a graph transfer module to
distill contextual information attentively from the labeled dataset to the
target dataset, which bridges feature correlation between datasets. To validate
the proposed method, we conducted extensive experiments on four SAR datasets,
which demonstrated the superiority of the proposed GKSNet as compared to
several state-of-the-art baselines. Our codes are available at
https://github.com/summitgao/SAR_CD_GKSNet.
Related papers
- PGNeXt: High-Resolution Salient Object Detection via Pyramid Grafting Network [24.54269823691119]
We present an advanced study on more challenging high-resolution salient object detection (HRSOD) from both dataset and network framework perspectives.
To compensate for the lack of HRSOD dataset, we thoughtfully collect a large-scale high resolution salient object detection dataset, called UHRSD.
All the images are finely annotated in pixel-level, far exceeding previous low-resolution SOD datasets.
arXiv Detail & Related papers (2024-08-02T09:31:21Z) - Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
Recent advances in unsupervised learning have demonstrated the ability of large vision models to achieve promising results on downstream tasks.
Such pre-training techniques have also been explored recently in the remote sensing domain due to the availability of large amount of unlabelled data.
In this paper, we re-visit transformers pre-training and leverage multi-scale information that is effectively utilized with multiple modalities.
arXiv Detail & Related papers (2024-03-08T16:18:04Z) - RadarGNN: Transformation Invariant Graph Neural Network for Radar-based
Perception [0.0]
A novel graph neural network is proposed that does not just use the information of the points themselves but also the relationships between them.
The model is designed to consider both point features and point-pair features, embedded in the edges of the graph.
The RadarGNN model outperforms all previous methods on the RadarScenes dataset.
arXiv Detail & Related papers (2023-04-13T13:57:21Z) - Synthetic Aperture Radar Image Change Detection via Layer
Attention-Based Noise-Tolerant Network [36.860069663770226]
We propose a layer attention-based noise-tolerant network, termed LANTNet.
In particular, we design a layer attention module that adaptively weights the feature of different convolution layers.
The experimental results on three SAR datasets show that the proposed LANTNet performs better than several state-of-the-art methods.
arXiv Detail & Related papers (2022-08-09T01:04:39Z) - Towards Data-Efficient Detection Transformers [77.43470797296906]
We show most detection transformers suffer from significant performance drops on small-size datasets.
We empirically analyze the factors that affect data efficiency, through a step-by-step transition from a data-efficient RCNN variant to the representative DETR.
We introduce a simple yet effective label augmentation method to provide richer supervision and improve data efficiency.
arXiv Detail & Related papers (2022-03-17T17:56:34Z) - Change Detection from Synthetic Aperture Radar Images via Dual Path
Denoising Network [38.78699830610313]
We propose a Dual Path Denoising Network (DPDNet) for SAR image change detection.
We introduce the random label propagation to clean the label noise involved in preclassification.
We also propose the distinctive patch convolution for feature representation learning to reduce the time consumption.
arXiv Detail & Related papers (2022-03-13T01:51:51Z) - Context-Preserving Instance-Level Augmentation and Deformable
Convolution Networks for SAR Ship Detection [50.53262868498824]
Shape deformation of targets in SAR image due to random orientation and partial information loss is an essential challenge in SAR ship detection.
We propose a data augmentation method to train a deep network that is robust to partial information loss within the targets.
arXiv Detail & Related papers (2022-02-14T07:01:01Z) - Weakly Supervised Change Detection Using Guided Anisotropic Difusion [97.43170678509478]
We propose original ideas that help us to leverage such datasets in the context of change detection.
First, we propose the guided anisotropic diffusion (GAD) algorithm, which improves semantic segmentation results.
We then show its potential in two weakly-supervised learning strategies tailored for change detection.
arXiv Detail & Related papers (2021-12-31T10:03:47Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
This paper explores a relatively less-studied methodology based on classification.
We propose new techniques to push its frontier in two aspects.
Experiments and visual analysis on large-scale public datasets for aerial images show the effectiveness of our approach.
arXiv Detail & Related papers (2020-11-19T05:42:02Z) - Solving Missing-Annotation Object Detection with Background
Recalibration Loss [49.42997894751021]
This paper focuses on a novel and challenging detection scenario: A majority of true objects/instances is unlabeled in the datasets.
Previous art has proposed to use soft sampling to re-weight the gradients of RoIs based on the overlaps with positive instances, while their method is mainly based on the two-stage detector.
In this paper, we introduce a superior solution called Background Recalibration Loss (BRL) that can automatically re-calibrate the loss signals according to the pre-defined IoU threshold and input image.
arXiv Detail & Related papers (2020-02-12T23:11:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.