Dynamic Channel Access via Meta-Reinforcement Learning
- URL: http://arxiv.org/abs/2201.09075v1
- Date: Fri, 24 Dec 2021 15:04:43 GMT
- Title: Dynamic Channel Access via Meta-Reinforcement Learning
- Authors: Ziyang Lu and M. Cenk Gursoy
- Abstract summary: We propose a meta-DRL framework that incorporates the method of Model-Agnostic Meta-Learning (MAML)
We show that only a few gradient descents are required for adapting to different tasks drawn from the same distribution.
- Score: 0.8223798883838329
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we address the channel access problem in a dynamic wireless
environment via meta-reinforcement learning. Spectrum is a scarce resource in
wireless communications, especially with the dramatic increase in the number of
devices in networks. Recently, inspired by the success of deep reinforcement
learning (DRL), extensive studies have been conducted in addressing wireless
resource allocation problems via DRL. However, training DRL algorithms usually
requires a massive amount of data collected from the environment for each
specific task and the well-trained model may fail if there is a small variation
in the environment. In this work, in order to address these challenges, we
propose a meta-DRL framework that incorporates the method of Model-Agnostic
Meta-Learning (MAML). In the proposed framework, we train a common
initialization for similar channel selection tasks. From the initialization, we
show that only a few gradient descents are required for adapting to different
tasks drawn from the same distribution. We demonstrate the performance
improvements via simulation results.
Related papers
- ODRL: A Benchmark for Off-Dynamics Reinforcement Learning [59.72217833812439]
We introduce ODRL, the first benchmark tailored for evaluating off-dynamics RL methods.
ODRL contains four experimental settings where the source and target domains can be either online or offline.
We conduct extensive benchmarking experiments, which show that no method has universal advantages across varied dynamics shifts.
arXiv Detail & Related papers (2024-10-28T05:29:38Z) - Advanced deep-reinforcement-learning methods for flow control: group-invariant and positional-encoding networks improve learning speed and quality [0.7421845364041001]
This study advances deep-reinforcement-learning (DRL) methods for flow control.
We focus on integrating group-invariant networks and positional encoding into DRL architectures.
The proposed methods are verified using a case study of Rayleigh-B'enard convection.
arXiv Detail & Related papers (2024-07-25T07:24:41Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
We present a model-based RL method that learns to transfer potentially useful dynamics and action demonstrations from offline data to a novel task.
The main idea is to use the world models not only as simulators for behavior learning but also as tools to measure the task relevance.
We demonstrate the advantages of our approach compared with the state-of-the-art methods in Meta-World and DeepMind Control Suite.
arXiv Detail & Related papers (2023-06-06T02:24:41Z) - Improving the generalizability and robustness of large-scale traffic
signal control [3.8028221877086814]
We study the robustness of deep reinforcement-learning (RL) approaches to control traffic signals.
We show that recent methods remain brittle in the face of missing data.
We propose using a combination of distributional and vanilla reinforcement learning through a policy ensemble.
arXiv Detail & Related papers (2023-06-02T21:30:44Z) - Train Hard, Fight Easy: Robust Meta Reinforcement Learning [78.16589993684698]
A major challenge of reinforcement learning (RL) in real-world applications is the variation between environments, tasks or clients.
Standard MRL methods optimize the average return over tasks, but often suffer from poor results in tasks of high risk or difficulty.
In this work, we define a robust MRL objective with a controlled level.
The data inefficiency is addressed via the novel Robust Meta RL algorithm (RoML)
arXiv Detail & Related papers (2023-01-26T14:54:39Z) - Enhanced Meta Reinforcement Learning using Demonstrations in Sparse
Reward Environments [10.360491332190433]
We develop a class of algorithms entitled Enhanced Meta-RL using Demonstrations.
We show how EMRLD jointly utilizes RL and supervised learning over the offline data to generate a meta-policy.
We also show that our EMRLD algorithms significantly outperform existing approaches in a variety of sparse reward environments.
arXiv Detail & Related papers (2022-09-26T22:01:12Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - MetaGater: Fast Learning of Conditional Channel Gated Networks via
Federated Meta-Learning [46.79356071007187]
We propose a holistic approach to jointly train the backbone network and the channel gating.
We develop a federated meta-learning approach to jointly learn good meta-initializations for both backbone networks and gating modules.
arXiv Detail & Related papers (2020-11-25T04:26:23Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
This work develops a methodology that enables data-driven methods to continuously learn and optimize in a dynamic environment.
We propose to build the notion of continual learning into the modeling process of learning wireless systems.
Our design is based on a novel min-max formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2020-11-16T08:24:34Z) - Curriculum in Gradient-Based Meta-Reinforcement Learning [10.447238563837173]
We show that gradient-based meta-learners are sensitive to task distributions.
With the wrong curriculum, agents suffer the effects of meta-overfitting, shallow adaptation, and adaptation instability.
arXiv Detail & Related papers (2020-02-19T01:40:45Z) - Modality Compensation Network: Cross-Modal Adaptation for Action
Recognition [77.24983234113957]
We propose a Modality Compensation Network (MCN) to explore the relationships of different modalities.
Our model bridges data from source and auxiliary modalities by a modality adaptation block to achieve adaptive representation learning.
Experimental results reveal that MCN outperforms state-of-the-art approaches on four widely-used action recognition benchmarks.
arXiv Detail & Related papers (2020-01-31T04:51:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.