Reducing circuit depth in adaptive variational quantum algorithms via
effective Hamiltonian theories
- URL: http://arxiv.org/abs/2201.09214v1
- Date: Sun, 23 Jan 2022 09:38:46 GMT
- Title: Reducing circuit depth in adaptive variational quantum algorithms via
effective Hamiltonian theories
- Authors: Jie Liu and Zhenyu Li and Jinlong Yang
- Abstract summary: We introduce a new transformation in the form of a product of a linear combination of excitation operators to construct the effective Hamiltonian with finite terms.
The effective Hamiltonian defined with this new transformation is incorporated into the adaptive variational quantum algorithms to maintain constant-size quantum circuits.
- Score: 8.24048506727803
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electronic structure simulation is an anticipated application for quantum
computers. Due to high-dimensional quantum entanglement in strongly correlated
systems, the quantum resources required to perform such simulations are far
beyond the capacity of current quantum devices. To reduce the quantum circuit
complexity, it has been suggested to incorporate a part of the electronic
correlation into an effective Hamiltonian, which is often obtained from a
similarity transformation of the electronic Hamiltonian. In this work, we
introduce a new transformation in the form of a product of a linear combination
of excitation operators to construct the effective Hamiltonian with finite
terms. To demonstrate its accuracy, we also consider an equivalent adaptive
variational algorithm with this transformation and show that it can obtain an
accurate ground state wave function. The effective Hamiltonian defined with
this new transformation is incorporated into the adaptive variational quantum
algorithms to maintain constant-size quantum circuits. The new computational
scheme is assessed by performing numerical simulations for small molecules.
Chemical accuracy is achieved with a much shallower circuit depth.
Related papers
- Non-adiabatic quantum dynamics with fermionic subspace-expansion
algorithms on quantum computers [0.0]
We introduce a novel computational framework for excited-states molecular quantum dynamics simulations.
We calculate the required excited-state transition properties with different flavors of the quantum subspace expansion and quantum equation-of-motion algorithms.
We show that only methods that can capture both weak and strong electron correlation effects can properly describe the non-adiabatic effects that tune the reactive event.
arXiv Detail & Related papers (2024-02-23T15:09:19Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Quantum algorithms for Schrieffer-Wolff transformation [4.237239130164727]
The Schrieffer-Wolff transformation aims to solve degenerate perturbation problems.
It describes the low-energy dynamics of the exact Hamiltonian in the low-energy subspace of unperturbed Hamiltonian.
This unitary transformation can be realized by quantum circuits.
arXiv Detail & Related papers (2022-01-31T15:27:57Z) - Orders of magnitude reduction in the computational overhead for quantum
many-body problems on quantum computers via an exact transcorrelated method [0.0]
We show that the Hamiltonian becomes non-Hermitian, posing problems for quantum algorithms based on the variational principle.
We overcome these limitations with the ansatz-based quantum imaginary time evolution algorithm.
Our work paves the way for the use of exact transcorrelated methods for the simulations of ab initio systems on quantum computers.
arXiv Detail & Related papers (2022-01-09T16:37:32Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - An efficient adaptive variational quantum solver of the Schrodinger
equation based on reduced density matrices [8.24048506727803]
We present an efficient adaptive variational quantum solver of the Schrodinger equation based on ADAPT-VQE.
This new algorithm is quite suitable for quantum simulations of chemical systems on near-term noisy intermediate-scale hardware.
arXiv Detail & Related papers (2020-12-13T12:22:41Z) - Low-depth Hamiltonian Simulation by Adaptive Product Formula [3.050399782773013]
Various Hamiltonian simulation algorithms have been proposed to efficiently study the dynamics of quantum systems on a quantum computer.
Here, we propose an adaptive approach to construct a low-depth time evolution circuit.
Our work sheds light on practical Hamiltonian simulation with noisy-intermediate-scale-quantum devices.
arXiv Detail & Related papers (2020-11-10T18:00:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.