Quantum algorithms for Schrieffer-Wolff transformation
- URL: http://arxiv.org/abs/2201.13304v1
- Date: Mon, 31 Jan 2022 15:27:57 GMT
- Title: Quantum algorithms for Schrieffer-Wolff transformation
- Authors: Zongkang Zhang, Yongdan Yang, Xiaosi Xu, Ying Li
- Abstract summary: The Schrieffer-Wolff transformation aims to solve degenerate perturbation problems.
It describes the low-energy dynamics of the exact Hamiltonian in the low-energy subspace of unperturbed Hamiltonian.
This unitary transformation can be realized by quantum circuits.
- Score: 4.237239130164727
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Schrieffer-Wolff transformation aims to solve degenerate perturbation
problems and give an effective Hamiltonian that describes the low-energy
dynamics of the exact Hamiltonian in the low-energy subspace of unperturbed
Hamiltonian. This unitary transformation decoupling the low-energy and
high-energy subspaces for the transformed Hamiltonian can be realized by
quantum circuits. We give a fully quantum algorithm for realizing the SW
transformation. We also propose a hybrid quantum-classical algorithm for
finding the effective Hamiltonian on NISQ hardware, where a general cost
function is used to indicate the decoupling degree. Numerical simulations
without or with noise and experiments on quantum computer ibmq_manila are
implemented for a Heisenberg chain model. Our results verify the algorithm and
show its validity on near-term quantum computers.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Expanding Hardware-Efficiently Manipulable Hilbert Space via Hamiltonian
Embedding [9.219297088819634]
Many promising quantum applications depend on the efficient quantum simulation of an exponentially large sparse Hamiltonian.
In this paper, we propose a technique named Hamiltonian embedding.
This technique simulates a desired sparse Hamiltonian by embedding it into the evolution of a larger and more structured quantum system.
arXiv Detail & Related papers (2024-01-16T18:19:29Z) - Higher-order quantum transformations of Hamiltonian dynamics [0.8192907805418581]
We present a quantum algorithm to achieve higher-order transformations of Hamiltonian dynamics.
By way of example, we demonstrate the simulation of negative time-reversal, and perform a Hamiltonian learning task.
arXiv Detail & Related papers (2023-03-17T06:01:59Z) - Reducing circuit depth in adaptive variational quantum algorithms via
effective Hamiltonian theories [8.24048506727803]
We introduce a new transformation in the form of a product of a linear combination of excitation operators to construct the effective Hamiltonian with finite terms.
The effective Hamiltonian defined with this new transformation is incorporated into the adaptive variational quantum algorithms to maintain constant-size quantum circuits.
arXiv Detail & Related papers (2022-01-23T09:38:46Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - A Hybrid Quantum-Classical Hamiltonian Learning Algorithm [6.90132007891849]
Hamiltonian learning is crucial to the certification of quantum devices and quantum simulators.
We propose a hybrid quantum-classical Hamiltonian learning algorithm to find the coefficients of the Pauli operator of the Hamiltonian.
arXiv Detail & Related papers (2021-03-01T15:15:58Z) - Hybrid quantum-classical algorithms for solving quantum chemistry in
Hamiltonian-wavefunction space [0.3093890460224435]
Variational quantum eigensolver(VQE) typically optimize variational parameters in a quantum circuit to prepare eigenstates for a quantum system.
In this paper, we incorporate derivatives of Hamiltonian into VQE and develop some hybrid quantum-classical algorithms.
arXiv Detail & Related papers (2020-08-20T15:08:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.