A Generalized Weighted Optimization Method for Computational Learning
and Inversion
- URL: http://arxiv.org/abs/2201.09223v1
- Date: Sun, 23 Jan 2022 10:35:34 GMT
- Title: A Generalized Weighted Optimization Method for Computational Learning
and Inversion
- Authors: Kui Ren, Yunan Yang and Bj\"orn Engquist
- Abstract summary: We analyze a generalized weighted least-squares optimization method for computational learning and inversion with noisy data.
We characterize the impact of the weighting scheme on the generalization error of the learning method.
We demonstrate that appropriate weighting from prior knowledge can improve the generalization capability of the learned model.
- Score: 15.535124460414588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The generalization capacity of various machine learning models exhibits
different phenomena in the under- and over-parameterized regimes. In this
paper, we focus on regression models such as feature regression and kernel
regression and analyze a generalized weighted least-squares optimization method
for computational learning and inversion with noisy data. The highlight of the
proposed framework is that we allow weighting in both the parameter space and
the data space. The weighting scheme encodes both a priori knowledge on the
object to be learned and a strategy to weight the contribution of different
data points in the loss function. Here, we characterize the impact of the
weighting scheme on the generalization error of the learning method, where we
derive explicit generalization errors for the random Fourier feature model in
both the under- and over-parameterized regimes. For more general feature maps,
error bounds are provided based on the singular values of the feature matrix.
We demonstrate that appropriate weighting from prior knowledge can improve the
generalization capability of the learned model.
Related papers
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and interpretability.
In this paper, we aim to help address such challenges by developing an textitinfluence functions framework.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Understanding Generalization of Federated Learning via Stability:
Heterogeneity Matters [1.4502611532302039]
Generalization performance is a key metric in evaluating machine learning models when applied to real-world applications.
Generalization performance is a key metric in evaluating machine learning models when applied to real-world applications.
arXiv Detail & Related papers (2023-06-06T16:12:35Z) - Provable Generalization of Overparameterized Meta-learning Trained with
SGD [62.892930625034374]
We study the generalization of a widely used meta-learning approach, Model-Agnostic Meta-Learning (MAML)
We provide both upper and lower bounds for the excess risk of MAML, which captures how SGD dynamics affect these generalization bounds.
Our theoretical findings are further validated by experiments.
arXiv Detail & Related papers (2022-06-18T07:22:57Z) - Towards Data-Algorithm Dependent Generalization: a Case Study on
Overparameterized Linear Regression [19.047997113063147]
We introduce a notion called data-algorithm compatibility, which considers the generalization behavior of the entire data-dependent training trajectory.
We perform a data-dependent trajectory analysis and derive a sufficient condition for compatibility in such a setting.
arXiv Detail & Related papers (2022-02-12T12:42:36Z) - Learning to Refit for Convex Learning Problems [11.464758257681197]
We propose a framework to learn to estimate optimized model parameters for different training sets using neural networks.
We rigorously characterize the power of neural networks to approximate convex problems.
arXiv Detail & Related papers (2021-11-24T15:28:50Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z) - On the Benefits of Invariance in Neural Networks [56.362579457990094]
We show that training with data augmentation leads to better estimates of risk and thereof gradients, and we provide a PAC-Bayes generalization bound for models trained with data augmentation.
We also show that compared to data augmentation, feature averaging reduces generalization error when used with convex losses, and tightens PAC-Bayes bounds.
arXiv Detail & Related papers (2020-05-01T02:08:58Z) - Generalisation error in learning with random features and the hidden
manifold model [23.71637173968353]
We study generalised linear regression and classification for a synthetically generated dataset.
We consider the high-dimensional regime and using the replica method from statistical physics.
We show how to obtain the so-called double descent behaviour for logistic regression with a peak at the threshold.
We discuss the role played by correlations in the data generated by the hidden manifold model.
arXiv Detail & Related papers (2020-02-21T14:49:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.