Generalisation error in learning with random features and the hidden
manifold model
- URL: http://arxiv.org/abs/2002.09339v2
- Date: Thu, 20 Aug 2020 08:32:53 GMT
- Title: Generalisation error in learning with random features and the hidden
manifold model
- Authors: Federica Gerace, Bruno Loureiro, Florent Krzakala, Marc M\'ezard and
Lenka Zdeborov\'a
- Abstract summary: We study generalised linear regression and classification for a synthetically generated dataset.
We consider the high-dimensional regime and using the replica method from statistical physics.
We show how to obtain the so-called double descent behaviour for logistic regression with a peak at the threshold.
We discuss the role played by correlations in the data generated by the hidden manifold model.
- Score: 23.71637173968353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study generalised linear regression and classification for a synthetically
generated dataset encompassing different problems of interest, such as learning
with random features, neural networks in the lazy training regime, and the
hidden manifold model. We consider the high-dimensional regime and using the
replica method from statistical physics, we provide a closed-form expression
for the asymptotic generalisation performance in these problems, valid in both
the under- and over-parametrised regimes and for a broad choice of generalised
linear model loss functions. In particular, we show how to obtain analytically
the so-called double descent behaviour for logistic regression with a peak at
the interpolation threshold, we illustrate the superiority of orthogonal
against random Gaussian projections in learning with random features, and
discuss the role played by correlations in the data generated by the hidden
manifold model. Beyond the interest in these particular problems, the
theoretical formalism introduced in this manuscript provides a path to further
extensions to more complex tasks.
Related papers
- Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging problem with interdependent data.
We derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains.
arXiv Detail & Related papers (2024-06-07T14:29:21Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Regularization, early-stopping and dreaming: a Hopfield-like setup to
address generalization and overfitting [0.0]
We look for optimal network parameters by applying a gradient descent over a regularized loss function.
Within this framework, the optimal neuron-interaction matrices correspond to Hebbian kernels revised by a reiterated unlearning protocol.
arXiv Detail & Related papers (2023-08-01T15:04:30Z) - A Unified Analysis of Multi-task Functional Linear Regression Models
with Manifold Constraint and Composite Quadratic Penalty [0.0]
The power of multi-task learning is brought in by imposing additional structures over the slope functions.
We show the composite penalty induces a specific norm, which helps to quantify the manifold curvature.
A unified convergence upper bound is obtained and specifically applied to the reduced-rank model and the graph Laplacian regularized model.
arXiv Detail & Related papers (2022-11-09T13:32:23Z) - Towards a mathematical understanding of learning from few examples with
nonlinear feature maps [68.8204255655161]
We consider the problem of data classification where the training set consists of just a few data points.
We reveal key relationships between the geometry of an AI model's feature space, the structure of the underlying data distributions, and the model's generalisation capabilities.
arXiv Detail & Related papers (2022-11-07T14:52:58Z) - Learning from few examples with nonlinear feature maps [68.8204255655161]
We explore the phenomenon and reveal key relationships between dimensionality of AI model's feature space, non-degeneracy of data distributions, and the model's generalisation capabilities.
The main thrust of our present analysis is on the influence of nonlinear feature transformations mapping original data into higher- and possibly infinite-dimensional spaces on the resulting model's generalisation capabilities.
arXiv Detail & Related papers (2022-03-31T10:36:50Z) - Fluctuations, Bias, Variance & Ensemble of Learners: Exact Asymptotics
for Convex Losses in High-Dimension [25.711297863946193]
We develop a theory for the study of fluctuations in an ensemble of generalised linear models trained on different, but correlated, features.
We provide a complete description of the joint distribution of the empirical risk minimiser for generic convex loss and regularisation in the high-dimensional limit.
arXiv Detail & Related papers (2022-01-31T17:44:58Z) - Optimal regularizations for data generation with probabilistic graphical
models [0.0]
Empirically, well-chosen regularization schemes dramatically improve the quality of the inferred models.
We consider the particular case of L 2 and L 1 regularizations in the Maximum A Posteriori (MAP) inference of generative pairwise graphical models.
arXiv Detail & Related papers (2021-12-02T14:45:16Z) - Topologically penalized regression on manifolds [0.0]
We study a regression problem on a compact manifold M.
In order to take advantage of the underlying geometry and topology of the data, the regression task is performed on the basis of the first several eigenfunctions of the Laplace-Beltrami operator of the manifold.
The proposed penalties are based on the topology of the sub-level sets of either the eigenfunctions or the estimated function.
arXiv Detail & Related papers (2021-10-26T14:59:13Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.