論文の概要: How to scale hyperparameters for quickshift image segmentation
- arxiv url: http://arxiv.org/abs/2201.09286v1
- Date: Sun, 23 Jan 2022 15:05:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-25 14:41:57.483537
- Title: How to scale hyperparameters for quickshift image segmentation
- Title(参考訳): クイックシフト画像分割のためのハイパーパラメータのスケーリング方法
- Authors: Damien Garreau
- Abstract要約: 理論的には、クイックシフトアルゴリズムのわずかに修正されたバージョンについて研究する。
我々は、画素ノイズとそのようなパッチ間の鋭い境界を持つ均一な画像パッチに焦点をあてる。
- 参考スコア(独自算出の注目度): 7.893831644671976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quickshift is a popular algorithm for image segmentation, used as a
preprocessing step in many applications. Unfortunately, it is quite challenging
to understand the hyperparameters' influence on the number and shape of
superpixels produced by the method. In this paper, we study theoretically a
slightly modified version of the quickshift algorithm, with a particular
emphasis on homogeneous image patches with i.i.d. pixel noise and sharp
boundaries between such patches. Leveraging this analysis, we derive a simple
heuristic to scale quickshift hyperparameters when dealing with real images,
which we check empirically.
- Abstract(参考訳): Quickshiftは画像セグメンテーションの一般的なアルゴリズムで、多くのアプリケーションにおいて前処理のステップとして使われる。
残念ながら、ハイパーパラメータが生成したスーパーピクセルの数と形状に与える影響を理解することは極めて困難である。
本稿では,クイックシフトアルゴリズムの微修正版を理論的に検討し,画素雑音を伴う均質なイメージパッチと,それらのパッチ間のシャープなバウンダリに着目した。
この分析を利用することで、実際の画像を扱う際にクイックシフトハイパーパラメータをスケールするための単純なヒューリスティックを導出し、経験的にチェックする。
関連論文リスト
- Adaptive Patching for High-resolution Image Segmentation with Transformers [9.525013089622183]
注意に基づくモデルは、セグメンテーションを含む画像分析の領域で増加している。
トランスフォーマーエンコーダにイメージを供給する標準的な方法は、イメージをパッチに分割し、トークンの線形シーケンスとしてモデルにパッチを供給することである。
顕微鏡病理画像などの高解像度画像では、セグメンテーションで好まれる小さなパッチサイズを使用する場合、二次計算とメモリコストは注意に基づくモデルの使用を禁止している。
我々はHPCのAdapative Mesh Refinement(AMR)法から着想を得た。
論文 参考訳(メタデータ) (2024-04-15T12:06:00Z) - Pixel Adapter: A Graph-Based Post-Processing Approach for Scene Text
Image Super-Resolution [22.60056946339325]
アップサンプリングによる画素歪みに対処するために,グラフアテンションに基づくPixel Adapter Module (PAM)を提案する。
PAMは、各ピクセルが隣人と対話し、機能を更新することで、ローカルな構造情報を効果的にキャプチャする。
提案手法は,従来の認識精度を上回り,高品質な超解像を生成することを実証する。
論文 参考訳(メタデータ) (2023-09-16T08:12:12Z) - Bridging Vision and Language Encoders: Parameter-Efficient Tuning for
Referring Image Segmentation [72.27914940012423]
画像セグメンテーションの参照における効率的なチューニング問題について検討する。
クロスモーダル情報交換を容易にするBridgerと呼ばれる新しいアダプタを提案する。
画像分割のための軽量デコーダも設計する。
論文 参考訳(メタデータ) (2023-07-21T12:46:15Z) - T-former: An Efficient Transformer for Image Inpainting [50.43302925662507]
トランスフォーマーと呼ばれる注目に基づくネットワークアーキテクチャのクラスは、自然言語処理の分野で大きなパフォーマンスを示している。
本稿では,Taylorの展開に応じて,解像度に線形に関連付けられた新たな注意を設計し,この注意に基づいて,画像インペイントのためのネットワークである$T$-formerを設計する。
いくつかのベンチマークデータセットの実験により,提案手法は比較的少ないパラメータ数と計算複雑性を維持しつつ,最先端の精度を達成できることが示されている。
論文 参考訳(メタデータ) (2023-05-12T04:10:42Z) - Cascaded Cross-Attention Networks for Data-Efficient Whole-Slide Image
Classification Using Transformers [0.11219061154635457]
全スライディングイメージングは、組織標本の高解像度画像のキャプチャとデジタル化を可能にする。
高解像度情報を効果的に活用するための候補としてトランスフォーマーアーキテクチャが提案されている。
本稿では,抽出されたパッチ数と線形にスケールするクロスアテンション機構に基づく新しいカスケード型クロスアテンションネットワーク(CCAN)を提案する。
論文 参考訳(メタデータ) (2023-05-11T16:42:24Z) - CoordFill: Efficient High-Resolution Image Inpainting via Parameterized
Coordinate Querying [52.91778151771145]
本稿では,近年の連続的暗黙表現の発達により,その限界を初めて破ろうとする。
実験の結果,提案手法はGTX 2080 Ti GPUを用いて2048$times$2048の画像をリアルタイムに処理できることがわかった。
論文 参考訳(メタデータ) (2023-03-15T11:13:51Z) - CNNs for JPEGs: A Study in Computational Cost [49.97673761305336]
畳み込みニューラルネットワーク(CNN)は過去10年間で驚くべき進歩を遂げてきた。
CNNはRGBピクセルから直接データの堅牢な表現を学習することができる。
近年,圧縮領域から直接学習できる深層学習手法が注目されている。
論文 参考訳(メタデータ) (2020-12-26T15:00:10Z) - Spatially-Adaptive Pixelwise Networks for Fast Image Translation [57.359250882770525]
高速かつ効率的な画像-画像変換を目的とした新しいジェネレータアーキテクチャを提案する。
私たちはピクセルワイズネットワークを使用します。つまり、各ピクセルは他のピクセルとは独立して処理されます。
私たちのモデルは最先端のベースラインよりも最大18倍高速です。
論文 参考訳(メタデータ) (2020-12-05T10:02:03Z) - Powers of layers for image-to-image translation [60.5529622990682]
本稿では,未ペア画像から画像への変換タスクに対処するシンプルなアーキテクチャを提案する。
固定重み付きイメージオートエンコーダアーキテクチャから始める。
各タスクに対して、潜在空間で動作している残留ブロックを学習し、ターゲット領域に到達するまで繰り返し呼び出される。
論文 参考訳(メタデータ) (2020-08-13T09:02:17Z) - Multi-Scale Superpatch Matching using Dual Superpixel Descriptors [0.6875312133832078]
スーパーピクセルへの過剰セグメンテーションは、高速な高密度画像処理を可能にする、非常に効果的な次元削減戦略である。
標準的な階層的多重解像度スキームと比較して、画像分解の固有の不規則性は問題である。
本稿では,新しいスーパーピクセル近傍ディスクリプタであるデュアルスーパーパッチを紹介する。
論文 参考訳(メタデータ) (2020-03-09T22:04:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。