ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer
- URL: http://arxiv.org/abs/2201.09376v1
- Date: Sun, 23 Jan 2022 21:58:19 GMT
- Title: ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer
- Authors: Pengfei Guo, Yiqun Mei, Jinyuan Zhou, Shanshan Jiang, Vishal M. Patel
- Abstract summary: We propose a recurrent transformer model, namely textbfReconFormer, for MRI reconstruction.
It can iteratively reconstruct high fertility magnetic resonance images from highly under-sampled k-space data.
We show that it achieves significant improvements over the state-of-the-art methods with better parameter efficiency.
- Score: 60.27951773998535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accelerating magnetic resonance image (MRI) reconstruction process is a
challenging ill-posed inverse problem due to the excessive under-sampling
operation in k-space. In this paper, we propose a recurrent transformer model,
namely \textbf{ReconFormer}, for MRI reconstruction which can iteratively
reconstruct high fertility magnetic resonance images from highly under-sampled
k-space data. In particular, the proposed architecture is built upon Recurrent
Pyramid Transformer Layers (RPTL), which jointly exploits intrinsic multi-scale
information at every architecture unit as well as the dependencies of the deep
feature correlation through recurrent states. Moreover, the proposed
ReconFormer is lightweight since it employs the recurrent structure for its
parameter efficiency. We validate the effectiveness of ReconFormer on multiple
datasets with different magnetic resonance sequences and show that it achieves
significant improvements over the state-of-the-art methods with better
parameter efficiency. Implementation code will be available in
https://github.com/guopengf/ReconFormer.
Related papers
- HyperCMR: Enhanced Multi-Contrast CMR Reconstruction with Eagle Loss [0.0]
HyperCMR is a novel framework designed to accelerate the reconstruction of cardiac magnetic resonance (CMR) images.
experiments conducted on the CMRxRecon2024 challenge dataset demonstrate that HyperCMR consistently outperforms the baseline.
arXiv Detail & Related papers (2024-10-04T17:29:38Z) - TC-KANRecon: High-Quality and Accelerated MRI Reconstruction via Adaptive KAN Mechanisms and Intelligent Feature Scaling [7.281993256973667]
This study presents an innovative conditional guided diffusion model, named as TC-KANRecon.
It incorporates the Multi-Free U-KAN (MF-UKAN) module and a dynamic clipping strategy.
Experimental results demonstrate that the proposed method outperforms other MRI reconstruction methods in both qualitative and quantitative evaluations.
arXiv Detail & Related papers (2024-08-11T06:31:56Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - Fill the K-Space and Refine the Image: Prompting for Dynamic and
Multi-Contrast MRI Reconstruction [31.404228406642194]
The key to dynamic or multi-contrast magnetic resonance imaging (MRI) reconstruction lies in exploring inter-frame or inter-contrast information.
We propose a two-stage MRI reconstruction pipeline to address these limitations.
Our proposed method significantly outperforms previous state-of-the-art accelerated MRI reconstruction methods.
arXiv Detail & Related papers (2023-09-25T02:51:00Z) - Diffusion Modeling with Domain-conditioned Prior Guidance for
Accelerated MRI and qMRI Reconstruction [3.083408283778178]
This study introduces a novel approach for image reconstruction based on a diffusion model conditioned on the native data domain.
The proposed method demonstrates a significant promise, particularly for reconstructing images at high acceleration factors.
arXiv Detail & Related papers (2023-09-02T01:33:50Z) - Self-Supervised MRI Reconstruction with Unrolled Diffusion Models [27.143473617162304]
We propose a novel self-supervised deep reconstruction model, named Self-Supervised Diffusion Reconstruction (SSDiffRecon)
SSDiffRecon expresses a conditional diffusion process that interleaves cross-attention transformers for reverse diffusion steps with data-consistency blocks for physics-driven processing.
Experiments on public brain MR datasets demonstrate the superiority of SSDiffRecon against state-of-the-art supervised, and self-supervised baselines in terms of reconstruction speed and quality.
arXiv Detail & Related papers (2023-06-29T03:31:46Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseRecon is a novel diffusion model-based MR reconstruction method.
It guides the generation process based on the observed signals.
It does not require additional training on specific acceleration factors.
arXiv Detail & Related papers (2022-03-08T02:25:38Z) - Reference-based Magnetic Resonance Image Reconstruction Using Texture
Transforme [86.6394254676369]
We propose a novel Texture Transformer Module (TTM) for accelerated MRI reconstruction.
We formulate the under-sampled data and reference data as queries and keys in a transformer.
The proposed TTM can be stacked on prior MRI reconstruction approaches to further improve their performance.
arXiv Detail & Related papers (2021-11-18T03:06:25Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
Recent deep learning-based methods for MR image reconstruction usually leverage a generic auto-encoder architecture.
We propose an Over-and-Under Complete Convolu?tional Recurrent Neural Network (OUCR), which consists of an overcomplete and an undercomplete Convolutional Recurrent Neural Network(CRNN)
The proposed method achieves significant improvements over the compressed sensing and popular deep learning-based methods with less number of trainable parameters.
arXiv Detail & Related papers (2021-06-16T15:56:34Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.