HyperCMR: Enhanced Multi-Contrast CMR Reconstruction with Eagle Loss
- URL: http://arxiv.org/abs/2410.03624v1
- Date: Fri, 4 Oct 2024 17:29:38 GMT
- Title: HyperCMR: Enhanced Multi-Contrast CMR Reconstruction with Eagle Loss
- Authors: Ruru Xu, Caner Özer, Ilkay Oksuz,
- Abstract summary: HyperCMR is a novel framework designed to accelerate the reconstruction of cardiac magnetic resonance (CMR) images.
experiments conducted on the CMRxRecon2024 challenge dataset demonstrate that HyperCMR consistently outperforms the baseline.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accelerating image acquisition for cardiac magnetic resonance imaging (CMRI) is a critical task. CMRxRecon2024 challenge aims to set the state of the art for multi-contrast CMR reconstruction. This paper presents HyperCMR, a novel framework designed to accelerate the reconstruction of multi-contrast cardiac magnetic resonance (CMR) images. HyperCMR enhances the existing PromptMR model by incorporating advanced loss functions, notably the innovative Eagle Loss, which is specifically designed to recover missing high-frequency information in undersampled k-space. Extensive experiments conducted on the CMRxRecon2024 challenge dataset demonstrate that HyperCMR consistently outperforms the baseline across multiple evaluation metrics, achieving superior SSIM and PSNR scores.
Related papers
- TC-KANRecon: High-Quality and Accelerated MRI Reconstruction via Adaptive KAN Mechanisms and Intelligent Feature Scaling [7.281993256973667]
This study presents an innovative conditional guided diffusion model, named as TC-KANRecon.
It incorporates the Multi-Free U-KAN (MF-UKAN) module and a dynamic clipping strategy.
Experimental results demonstrate that the proposed method outperforms other MRI reconstruction methods in both qualitative and quantitative evaluations.
arXiv Detail & Related papers (2024-08-11T06:31:56Z) - DiffCMR: Fast Cardiac MRI Reconstruction with Diffusion Probabilistic
Models [11.068359534951783]
DiffCMR perceives conditioning signals from the under-sampled MRI image slice and generates its corresponding fully-sampled MRI image slice.
We validate DiffCMR with cine reconstruction and T1/T2 mapping tasks on MICCAI 2023 Cardiac MRI Reconstruction Challenge dataset.
Results show that our method achieves state-of-the-art performance, exceeding previous methods by a significant margin.
arXiv Detail & Related papers (2023-12-08T06:11:21Z) - Cine cardiac MRI reconstruction using a convolutional recurrent network
with refinement [9.173298795526152]
We investigate the use of a convolutional recurrent neural network (CRNN) architecture to exploit temporal correlations in cardiac MRI reconstruction.
This is combined with a single-image super-resolution refinement module to improve single coil reconstruction by 4.4% in structural similarity and 3.9% in normalised mean square error.
The proposed model demonstrates considerable enhancements compared to the baseline case and holds promising potential for further improving cardiac MRI reconstruction.
arXiv Detail & Related papers (2023-09-23T14:07:04Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
There has been growing interest in deep learning-based CMR imaging algorithms.
Deep learning methods require large training datasets.
This dataset includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects.
arXiv Detail & Related papers (2023-09-19T15:14:42Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseRecon is a novel diffusion model-based MR reconstruction method.
It guides the generation process based on the observed signals.
It does not require additional training on specific acceleration factors.
arXiv Detail & Related papers (2022-03-08T02:25:38Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
We propose a recurrent transformer model, namely textbfReconFormer, for MRI reconstruction.
It can iteratively reconstruct high fertility magnetic resonance images from highly under-sampled k-space data.
We show that it achieves significant improvements over the state-of-the-art methods with better parameter efficiency.
arXiv Detail & Related papers (2022-01-23T21:58:19Z) - Reference-based Magnetic Resonance Image Reconstruction Using Texture
Transforme [86.6394254676369]
We propose a novel Texture Transformer Module (TTM) for accelerated MRI reconstruction.
We formulate the under-sampled data and reference data as queries and keys in a transformer.
The proposed TTM can be stacked on prior MRI reconstruction approaches to further improve their performance.
arXiv Detail & Related papers (2021-11-18T03:06:25Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
We propose a novel Multi-modal Aggregation Network, named MANet, which is capable of discovering complementary representations from a fully sampled auxiliary modality.
In our MANet, the representations from the fully sampled auxiliary and undersampled target modalities are learned independently through a specific network.
Our MANet follows a hybrid domain learning framework, which allows it to simultaneously recover the frequency signal in the $k$-space domain.
arXiv Detail & Related papers (2021-10-15T13:16:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.