Spherical Poisson Point Process Intensity Function Modeling and
Estimation with Measure Transport
- URL: http://arxiv.org/abs/2201.09485v1
- Date: Mon, 24 Jan 2022 06:46:22 GMT
- Title: Spherical Poisson Point Process Intensity Function Modeling and
Estimation with Measure Transport
- Authors: Tin Lok James Ng and Andrew Zammit-Mangion
- Abstract summary: We present a new approach for modeling non-homogeneous Poisson process intensity functions on the sphere.
The central idea of this framework is to build, and estimate, a flexible Bijective map that transforms the underlying intensity function of interest on the sphere into a simpler reference, intensity function, also on the sphere.
- Score: 0.20305676256390934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years have seen an increased interest in the application of methods
and techniques commonly associated with machine learning and artificial
intelligence to spatial statistics. Here, in a celebration of the ten-year
anniversary of the journal Spatial Statistics, we bring together normalizing
flows, commonly used for density function estimation in machine learning, and
spherical point processes, a topic of particular interest to the journal's
readership, to present a new approach for modeling non-homogeneous Poisson
process intensity functions on the sphere. The central idea of this framework
is to build, and estimate, a flexible bijective map that transforms the
underlying intensity function of interest on the sphere into a simpler,
reference, intensity function, also on the sphere. Map estimation can be done
efficiently using automatic differentiation and stochastic gradient descent,
and uncertainty quantification can be done straightforwardly via nonparametric
bootstrap. We investigate the viability of the proposed method in a simulation
study, and illustrate its use in a proof-of-concept study where we model the
intensity of cyclone events in the North Pacific Ocean. Our experiments reveal
that normalizing flows present a flexible and straightforward way to model
intensity functions on spheres, but that their potential to yield a good fit
depends on the architecture of the bijective map, which can be difficult to
establish in practice.
Related papers
- Unlocking Point Processes through Point Set Diffusion [42.96573032954792]
We introduce Point Set Diffusion, a point diffusion-based latent variable model that can represent arbitrary processes on general metric spaces without relying on the intensity function.
Our approach enables efficient, parallel sampling and flexible generation for complex conditional tasks defined on the metric space.
arXiv Detail & Related papers (2024-10-29T19:33:18Z) - von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
We explore a family of expressive and interpretable distributions over circle-valued random functions.
The resulting probability model has connections with continuous spin models in statistical physics.
For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Markov Chain Monte Carlo sampling.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - Deep Learning and genetic algorithms for cosmological Bayesian inference speed-up [0.0]
We present a novel approach to accelerate the Bayesian inference process, focusing specifically on the nested sampling algorithms.
Our proposed method utilizes the power of deep learning, employing feedforward neural networks to approximate the likelihood function dynamically during the Bayesian inference process.
The implementation integrates with nested sampling algorithms and has been thoroughly evaluated using both simple cosmological dark energy models and diverse observational datasets.
arXiv Detail & Related papers (2024-05-06T09:14:58Z) - Simulation-based inference using surjective sequential neural likelihood
estimation [50.24983453990065]
Surjective Sequential Neural Likelihood estimation is a novel method for simulation-based inference.
By embedding the data in a low-dimensional space, SSNL solves several issues previous likelihood-based methods had when applied to high-dimensional data sets.
arXiv Detail & Related papers (2023-08-02T10:02:38Z) - Sensing Cox Processes via Posterior Sampling and Positive Bases [56.82162768921196]
We study adaptive sensing of point processes, a widely used model from spatial statistics.
We model the intensity function as a sample from a truncated Gaussian process, represented in a specially constructed positive basis.
Our adaptive sensing algorithms use Langevin dynamics and are based on posterior sampling (textscCox-Thompson) and top-two posterior sampling (textscTop2) principles.
arXiv Detail & Related papers (2021-10-21T14:47:06Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Physics-constrained Bayesian inference of state functions in classical
density-functional theory [0.6445605125467573]
We develop a novel data-driven approach to the inverse problem of classical statistical mechanics.
We develop an efficient learning algorithm which characterises the construction of approximate free energy functionals.
We consider excluded volume particle interactions, which are ubiquitous in nature, whilst being highly challenging for modelling in terms of free energy.
arXiv Detail & Related papers (2020-10-07T12:43:42Z) - A physics-informed operator regression framework for extracting
data-driven continuum models [0.0]
We present a framework for discovering continuum models from high fidelity molecular simulation data.
Our approach applies a neural network parameterization of governing physics in modal space.
We demonstrate the effectiveness of our framework for a variety of physics, including local and nonlocal diffusion processes and single and multiphase flows.
arXiv Detail & Related papers (2020-09-25T01:13:51Z) - UNIPoint: Universally Approximating Point Processes Intensities [125.08205865536577]
We provide a proof that a class of learnable functions can universally approximate any valid intensity function.
We implement UNIPoint, a novel neural point process model, using recurrent neural networks to parameterise sums of basis function upon each event.
arXiv Detail & Related papers (2020-07-28T09:31:56Z) - Fast approximations in the homogeneous Ising model for use in scene
analysis [61.0951285821105]
We provide accurate approximations that make it possible to numerically calculate quantities needed in inference.
We show that our approximation formulae are scalable and unfazed by the size of the Markov Random Field.
The practical import of our approximation formulae is illustrated in performing Bayesian inference in a functional Magnetic Resonance Imaging activation detection experiment, and also in likelihood ratio testing for anisotropy in the spatial patterns of yearly increases in pistachio tree yields.
arXiv Detail & Related papers (2017-12-06T14:24:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.