Provable Maximum Entropy Manifold Exploration via Diffusion Models
- URL: http://arxiv.org/abs/2506.15385v1
- Date: Wed, 18 Jun 2025 11:59:15 GMT
- Title: Provable Maximum Entropy Manifold Exploration via Diffusion Models
- Authors: Riccardo De Santi, Marin Vlastelica, Ya-Ping Hsieh, Zebang Shen, Niao He, Andreas Krause,
- Abstract summary: Exploration is critical for solving real-world decision-making problems such as scientific discovery.<n>We introduce a novel framework that casts exploration as entropy over approximate data manifold implicitly defined by a pre-trained diffusion model.<n>We develop an algorithm based on mirror descent that solves the exploration problem as sequential fine-tuning of a pre-trained diffusion model.
- Score: 58.89696361871563
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exploration is critical for solving real-world decision-making problems such as scientific discovery, where the objective is to generate truly novel designs rather than mimic existing data distributions. In this work, we address the challenge of leveraging the representational power of generative models for exploration without relying on explicit uncertainty quantification. We introduce a novel framework that casts exploration as entropy maximization over the approximate data manifold implicitly defined by a pre-trained diffusion model. Then, we present a novel principle for exploration based on density estimation, a problem well-known to be challenging in practice. To overcome this issue and render this method truly scalable, we leverage a fundamental connection between the entropy of the density induced by a diffusion model and its score function. Building on this, we develop an algorithm based on mirror descent that solves the exploration problem as sequential fine-tuning of a pre-trained diffusion model. We prove its convergence to the optimal exploratory diffusion model under realistic assumptions by leveraging recent understanding of mirror flows. Finally, we empirically evaluate our approach on both synthetic and high-dimensional text-to-image diffusion, demonstrating promising results.
Related papers
- Consistent World Models via Foresight Diffusion [56.45012929930605]
We argue that a key bottleneck in learning consistent diffusion-based world models lies in the suboptimal predictive ability.<n>We propose Foresight Diffusion (ForeDiff), a diffusion-based world modeling framework that enhances consistency by decoupling condition understanding from target denoising.
arXiv Detail & Related papers (2025-05-22T10:01:59Z) - One-for-More: Continual Diffusion Model for Anomaly Detection [63.50488826645681]
Anomaly detection methods utilize diffusion models to generate or reconstruct normal samples when given arbitrary anomaly images.<n>Our study found that the diffusion model suffers from severe faithfulness hallucination'' and catastrophic forgetting''<n>We propose a continual diffusion model that uses gradient projection to achieve stable continual learning.
arXiv Detail & Related papers (2025-02-27T07:47:27Z) - Fast Diffusion EM: a diffusion model for blind inverse problems with
application to deconvolution [0.0]
Current methods assume the degradation to be known and provide impressive results in terms of restoration and diversity.
In this work, we leverage the efficiency of those models to jointly estimate the restored image and unknown parameters of the kernel model.
Our method alternates between approximating the expected log-likelihood of the problem using samples drawn from a diffusion model and a step to estimate unknown model parameters.
arXiv Detail & Related papers (2023-09-01T06:47:13Z) - A prior regularized full waveform inversion using generative diffusion
models [0.5156484100374059]
Full waveform inversion (FWI) has the potential to provide high-resolution subsurface model estimations.
Due to limitations in observation, e.g., regional noise, limited shots or receivers, and band-limited data, it is hard to obtain the desired high-resolution model with FWI.
We propose a new paradigm for FWI regularized by generative diffusion models.
arXiv Detail & Related papers (2023-06-22T10:10:34Z) - Lipschitz Singularities in Diffusion Models [64.28196620345808]
Diffusion models often display the infinite Lipschitz property of the network with respect to time variable near the zero point.<n>We propose a novel approach, dubbed E-TSDM, which alleviates the Lipschitz singularities of the diffusion model near the zero point.<n>Our work may advance the understanding of the general diffusion process, and also provide insights for the design of diffusion models.
arXiv Detail & Related papers (2023-06-20T03:05:28Z) - Reconstructing Graph Diffusion History from a Single Snapshot [87.20550495678907]
We propose a novel barycenter formulation for reconstructing Diffusion history from A single SnapsHot (DASH)
We prove that estimation error of diffusion parameters is unavoidable due to NP-hardness of diffusion parameter estimation.
We also develop an effective solver named DIffusion hiTting Times with Optimal proposal (DITTO)
arXiv Detail & Related papers (2023-06-01T09:39:32Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Two-stage Denoising Diffusion Model for Source Localization in Graph
Inverse Problems [19.57064597050846]
Source localization is the inverse problem of graph information dissemination.
We propose a two-stage optimization framework, the source localization denoising diffusion model (SL-Diff)
SL-Diff yields excellent prediction results within a reasonable sampling time at extensive experiments.
arXiv Detail & Related papers (2023-04-18T09:11:09Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
We provide the first rigorous analysis on approximation and generalization abilities of diffusion modeling.
We show that when the true density function belongs to the Besov space and the empirical score matching loss is properly minimized, the generated data distribution achieves the nearly minimax optimal estimation rates.
arXiv Detail & Related papers (2023-03-03T11:31:55Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.