Hidden Quantum Criticality and Entanglement in Quench Dynamics
- URL: http://arxiv.org/abs/2202.04654v1
- Date: Wed, 9 Feb 2022 19:00:00 GMT
- Title: Hidden Quantum Criticality and Entanglement in Quench Dynamics
- Authors: Sanku Paul, Paraj Titum, and Mohammad F. Maghrebi
- Abstract summary: Entanglement exhibits universal behavior near the ground-state critical point where correlations are long-ranged and the thermodynamic entropy is vanishing.
A quantum quench imparts extensive energy and results in a build-up of entropy, hence no critical behavior is expected at long times.
We show that quantum criticality is hidden in higher-order correlations and becomes manifest via measures such as the mutual information and logarithmic negativity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entanglement exhibits universal behavior near the ground-state critical point
where correlations are long-ranged and the thermodynamic entropy is vanishing.
On the other hand, a quantum quench imparts extensive energy and results in a
build-up of entropy, hence no critical behavior is expected at long times. In
this work, we present a new paradigm in the quench dynamics of integrable spin
chains which exhibit a ground-state order-disorder phase transition at a
critical line. Specifically, we consider a quench along the critical line which
displays a volume-law behavior of the entropy and exponentially decaying
correlations; however, we show that quantum criticality is hidden in
higher-order correlations and becomes manifest via measures such as the mutual
information and logarithmic negativity. Furthermore, we showcase the
scale-invariance of the R\'{e}nyi mutual information between disjoint regions
as further evidence for genuine critical behavior. We attribute the emerging
universality to the vanishing effective temperature of the soft mode in spite
of the quench. Our results are amenable to an experimental realization on
different quantum simulator platforms, particularly the Rydberg simulators.
Related papers
- Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Universal Quench Dynamics of an Open Quantum System [3.3463067879269865]
We study the universal dynamical behaviors resulting from quantum criticality under the condition of environmental temperature quench.
Our research offers profound insights into the relationship between quantum criticality and nonequilibrium dynamics.
arXiv Detail & Related papers (2024-08-08T09:25:24Z) - Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays [41.94295877935867]
In the noninteracting case, quantized Thouless pumps can only occur when a topological singularity is encircled adiabatically.
In the presence of interactions, such topological transport can even persist for exotic paths in which the system gets arbitrarily close to the noninteracting singularity.
arXiv Detail & Related papers (2024-02-14T16:58:21Z) - Eigenstate Thermalization and its breakdown in Quantum Spin Chains with
Inhomogeneous Interactions [7.257279589646522]
The eigenstate thermalization hypothesis (ETH) is a successful theory that establishes the criteria for ergodicity and thermalization in isolated quantum many-body systems.
We investigate the thermalization properties of spin-$ 1/2 $ XXZ chain with linearly-inhomogeneous interactions.
arXiv Detail & Related papers (2023-10-30T08:12:21Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Sunburst quantum Ising model under interaction quench: entanglement and
role of initial state coherence [0.0]
We study the non-equilibrium dynamics of an isolated bipartite quantum system under interaction quench.
We show the importance of the role played by the coherence of the initial state in deciding the nature of thermalization.
arXiv Detail & Related papers (2022-12-23T11:57:47Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Breakdown of quantum-classical correspondence and dynamical generation
of entanglement [6.167267225728292]
We study the generation of quantum entanglement induced by an ideal Fermi gas confined in a chaotic cavity.
We find that the breakdown of the quantum-classical correspondence of particle motion, via dramatically changing the spatial structure of many-body wavefunction, leads to profound changes of the entanglement structure.
arXiv Detail & Related papers (2021-04-14T03:09:24Z) - Universal dynamics of superradiant phase transition in the anisotropic
quantum Rabi model [6.133109867277849]
We investigate the universally non-equilibrium dynamics of superradiant phase transition in the anisotropic quantum Rabi model.
We analytically extract the critical exponents from the excitation gap and the diverging length scale near the critical point.
arXiv Detail & Related papers (2020-09-23T10:44:29Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.