論文の概要: Language Generation for Broad-Coverage, Explainable Cognitive Systems
- arxiv url: http://arxiv.org/abs/2201.10422v1
- Date: Tue, 25 Jan 2022 16:09:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-26 20:33:31.829829
- Title: Language Generation for Broad-Coverage, Explainable Cognitive Systems
- Title(参考訳): 広範に説明可能な認知システムのための言語生成
- Authors: Marjorie McShane and Ivan Leon
- Abstract要約: 本稿では,OntoAgent認知アーキテクチャ内で開発された言語依存型知的エージェント(LEIA)の自然言語生成の最近の進歩について述べる。
同じ知識ベース、計算言語学の理論、エージェントアーキテクチャ、そして短期的アプリケーションをサポートしながら、時間とともに幅広いカバレッジ機能を開発する方法論を使っている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes recent progress on natural language generation (NLG) for
language-endowed intelligent agents (LEIAs) developed within the OntoAgent
cognitive architecture. The approach draws heavily from past work on natural
language understanding in this paradigm: it uses the same knowledge bases,
theory of computational linguistics, agent architecture, and methodology of
developing broad-coverage capabilities over time while still supporting
near-term applications.
- Abstract(参考訳): 本稿では,言語依存型知的エージェント(LEIA)における自然言語生成(NLG)の最近の進歩について述べる。
このアプローチは、このパラダイムにおける自然言語理解に関する過去の研究から大きく引き起こされている。これは、同じ知識ベース、計算言語学の理論、エージェントアーキテクチャ、そして、短期的アプリケーションをサポートしながら、時間とともに幅広いカバレッジ機能を開発する方法論を使用する。
関連論文リスト
- Neurosymbolic Graph Enrichment for Grounded World Models [47.92947508449361]
複雑な問題に対処するために, LLM の反応性を向上し, 活用するための新しいアプローチを提案する。
我々は,大規模言語モデルの強みと構造的意味表現を組み合わせた,多モーダルで知識を付加した意味の形式表現を作成する。
非構造化言語モデルと形式的意味構造とのギャップを埋めることで、自然言語理解と推論における複雑な問題に対処するための新たな道を開く。
論文 参考訳(メタデータ) (2024-11-19T17:23:55Z) - Language Evolution with Deep Learning [49.879239655532324]
計算モデリングは言語の出現の研究において重要な役割を担っている。
構造化言語の出現を誘発する可能性のある条件と学習プロセスをシミュレートすることを目的としている。
この章では、最近機械学習の分野に革命をもたらした別の種類の計算モデル、ディープ・ラーニング・モデルについて論じる。
論文 参考訳(メタデータ) (2024-03-18T16:52:54Z) - Deep Learning Approaches for Improving Question Answering Systems in
Hepatocellular Carcinoma Research [0.0]
近年,自然言語処理(NLP)の進歩は,ディープラーニング技術によって加速されている。
膨大な量のデータに基づいてトレーニングされたBERTとGPT-3は、言語理解と生成に革命をもたらした。
本稿では,大規模モデルベースNLPの現状と今後の展望について述べる。
論文 参考訳(メタデータ) (2024-02-25T09:32:17Z) - Formal Aspects of Language Modeling [74.16212987886013]
大規模言語モデルは最も一般的なNLP発明の1つとなっている。
これらのノートは、ETH Z "urich course on large language model" の理論的部分の伴奏である。
論文 参考訳(メタデータ) (2023-11-07T20:21:42Z) - Rethinking the Evaluating Framework for Natural Language Understanding
in AI Systems: Language Acquisition as a Core for Future Metrics [0.0]
人工知能(AI)の急成長分野において、自然言語処理(NLP)における大規模言語モデル(LLM)の先例のない進歩は、従来の機械学習のメトリクスのアプローチ全体を再考する機会を提供する。
本稿では,確立されたチューリングテストから,言語習得を基盤とした全包含フレームワークへのパラダイムシフトを提案する。
論文 参考訳(メタデータ) (2023-09-21T11:34:52Z) - Cognitive Architectures for Language Agents [44.89258267600489]
言語エージェントのための認知アーキテクチャ(CoALA)を提案する。
CoALAはモジュラーメモリコンポーネントを備えた言語エージェント、内部メモリと外部環境と相互作用する構造化されたアクションスペース、アクションを選択するための一般的な意思決定プロセスを記述する。
我々は、CoALAを使用して、振り返りによる調査と、最近の多くの作業の組織化を行い、より有能なエージェントに対する行動可能な方向を前向きに特定します。
論文 参考訳(メタデータ) (2023-09-05T17:56:20Z) - Exploiting Language Models as a Source of Knowledge for Cognitive Agents [4.557963624437782]
大規模言語モデル(LLM)は、質問応答、要約、自然言語推論など、文の完成度をはるかに超える機能を提供する。
これらの能力の多くは認知システムに潜在的に適用できるが、我々の研究は認知エージェントのタスク知識の源として言語モデルを利用しており、認知アーキテクチャを通じて実現されたエージェントである。
論文 参考訳(メタデータ) (2023-09-05T15:18:04Z) - From Word Models to World Models: Translating from Natural Language to
the Probabilistic Language of Thought [124.40905824051079]
言語インフォームド・シンキングのための計算フレームワークである「構成」を合理的に提案する。
我々は、自然言語から確率論的思考言語への文脈感応的なマッピングとして、言語の意味を定式化する。
LLMは、現実的に適切な言語的意味をキャプチャする文脈依存翻訳を生成することができることを示す。
認知的なモチベーションを持つシンボリックモジュールを統合するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2023-06-22T05:14:00Z) - MRKL Systems: A modular, neuro-symbolic architecture that combines large
language models, external knowledge sources and discrete reasoning [50.40151403246205]
巨大な言語モデル(LM)は、自然言語ベースの知識タスクのゲートウェイとして機能する、AIの新しい時代を支えている。
離散的な知識と推論モジュールによって補完される、複数のニューラルモデルによる柔軟なアーキテクチャを定義する。
本稿では,MRKL(Modular Reasoning, Knowledge and Language)システムと呼ばれる,このニューロシンボリックアーキテクチャについて述べる。
論文 参考訳(メタデータ) (2022-05-01T11:01:28Z) - Knowledge Engineering in the Long Game of Artificial Intelligence: The
Case of Speech Acts [0.6445605125467572]
本稿では,知識工学の原則と実践について述べる。
我々は,言語学,認知モデル,統計自然言語処理において広く追求されている課題である対話行動モデリングに注目した。
論文 参考訳(メタデータ) (2022-02-02T14:05:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。