論文の概要: Multi-objective Semi-supervised Clustering for Finding Predictive
Clusters
- arxiv url: http://arxiv.org/abs/2201.10764v1
- Date: Wed, 26 Jan 2022 06:24:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-27 20:40:21.703091
- Title: Multi-objective Semi-supervised Clustering for Finding Predictive
Clusters
- Title(参考訳): 予測クラスタ探索のための多目的半教師付きクラスタリング
- Authors: Zahra Ghasemi, Hadi Akbarzadeh Khorshidi, Uwe Aickelin
- Abstract要約: 本研究は,クラスタリング問題に焦点をあて,結果変数に有意なコンパクトクラスタを見つけることを目的とする。
主な目標は、各クラスタでの観測が類似し、結果変数をこれらのクラスタを使用して同時に予測できるように、データポイントをパーティショニングすることである。
- 参考スコア(独自算出の注目度): 0.5371337604556311
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study concentrates on clustering problems and aims to find compact
clusters that are informative regarding the outcome variable. The main goal is
partitioning data points so that observations in each cluster are similar and
the outcome variable can be predicated using these clusters simultaneously. We
model this semi-supervised clustering problem as a multi-objective optimization
problem with considering deviation of data points in clusters and prediction
error of the outcome variable as two objective functions to be minimized. For
finding optimal clustering solutions, we employ a non-dominated sorting genetic
algorithm II approach and local regression is applied as prediction method for
the output variable. For comparing the performance of the proposed model, we
compute seven models using five real-world data sets. Furthermore, we
investigate the impact of using local regression for predicting the outcome
variable in all models, and examine the performance of the multi-objective
models compared to single-objective models.
- Abstract(参考訳): 本研究は,クラスタリング問題に焦点をあて,結果変数に有意なコンパクトクラスタを見つけることを目的とする。
主な目標は、各クラスタでの観測が類似し、結果変数をこれらのクラスタを使って同時に予測できるように、データポイントを分割することである。
この半教師付きクラスタリング問題を,クラスタ内のデータポイントの偏差と結果変数の予測誤差を最小化するための2つの目的関数として考慮し,多目的最適化問題としてモデル化する。
最適クラスタリング解を求めるために,非支配的ソート遺伝的アルゴリズムiiアプローチを採用し,局所回帰を出力変数の予測法として適用した。
提案モデルの性能を比較するため、5つの実世界のデータセットを用いて7つのモデルを計算する。
さらに,すべてのモデルにおける結果変数の予測に局所回帰を用いることが与える影響について検討し,多目的モデルの性能を単目的モデルと比較した。
関連論文リスト
- Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
マルチタスク学習(MTL)は、タスク間の共有知識を活用し、一般化とパフォーマンスを改善するために設計された強力な機械学習パラダイムである。
本稿では,タスククラスタリングと特徴変換の交点におけるMTL手法を提案する。
両段階において、鍵となる側面は減った目標と特徴の解釈可能性を維持することである。
論文 参考訳(メタデータ) (2024-06-12T08:30:16Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - A Generalized Framework for Predictive Clustering and Optimization [18.06697544912383]
クラスタリングは強力で広く使われているデータサイエンスツールです。
本稿では,予測クラスタリングのための一般化最適化フレームワークを定義する。
また,大域的最適化のためにMILP(mixed-integer linear programming)を利用する共同最適化手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T19:56:51Z) - Time series clustering based on prediction accuracy of global
forecasting models [0.0]
本稿では,時系列のモデルに基づくクラスタリング手法を提案する。
文献で提案されているほとんどの手法とは異なり、この手法はクラスタリング分割を構成する主要な要素として予測精度を考慮している。
シミュレーション実験により,クラスタリングの有効性と予測精度の両面で,本手法はいくつかの代替手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-04-30T13:12:19Z) - A parallelizable model-based approach for marginal and multivariate
clustering [0.0]
本稿では,モデルに基づくクラスタリングの頑健さを生かしたクラスタリング手法を提案する。
我々は、各マージンごとに異なる数のクラスタを持つことができる有限混合モデルを指定することで、この問題に対処する。
提案手法は、完全な(結合した)モデルベースのクラスタリング手法よりも、中程度から高次元の処理に適するだけでなく、計算的にも魅力的である。
論文 参考訳(メタデータ) (2022-12-07T23:54:41Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
我々は,非負の特徴特性を活用し,多視点情報を統合された共同学習フレームワークに組み込む,新しいクラスタリングモデルを定式化する。
また、深層機能に基づいたクラスタリングデータに対するマルチモデル非負グラフベースのアプローチを初めて検討する。
論文 参考訳(メタデータ) (2022-11-03T08:18:27Z) - clusterBMA: Bayesian model averaging for clustering [1.2021605201770345]
本稿では、教師なしクラスタリングアルゴリズムの結果の重み付きモデル平均化を可能にするクラスタBMAを提案する。
クラスタリング内部検証基準を用いて、各モデルの結果の重み付けに使用される後続モデル確率の近似を開発する。
シミュレーションデータ上での他のアンサンブルクラスタリングメソッドのパフォーマンスに加えて、クラスタBMAは平均クラスタへの確率的アロケーションを含むユニークな機能を提供する。
論文 参考訳(メタデータ) (2022-09-09T04:55:20Z) - Personalized Federated Learning via Convex Clustering [72.15857783681658]
本稿では,局所凸型ユーザコストを用いた個人化フェデレーション学習のためのアルゴリズム群を提案する。
提案するフレームワークは,異なるユーザのモデルの違いをペナル化する凸クラスタリングの一般化に基づいている。
論文 参考訳(メタデータ) (2022-02-01T19:25:31Z) - Anomaly Clustering: Grouping Images into Coherent Clusters of Anomaly
Types [60.45942774425782]
我々は異常クラスタリングを導入し、その目標はデータを異常型の一貫性のあるクラスタにまとめることである。
これは異常検出とは違い、その目標は異常を通常のデータから分割することである。
パッチベースの事前訓練されたディープ埋め込みとオフザシェルフクラスタリング手法を用いた,単純で効果的なクラスタリングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-21T23:11:33Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
本稿では,適応グラフ正規化に基づくマルチビュークラスタリング手法を提案する。
5つの多視点ベンチマークの実験結果から,提案手法が他の最先端手法をクリアマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-08-23T08:25:06Z) - Blocked Clusterwise Regression [0.0]
我々は、各ユニットが複数の潜伏変数を持つことを可能にすることで、離散的非観測的不均一性に対する以前のアプローチを一般化する。
我々は,クラスタの過剰な数のクラスタリングの理論に寄与し,この設定に対する新たな収束率を導出する。
論文 参考訳(メタデータ) (2020-01-29T23:29:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。