論文の概要: A parallelizable model-based approach for marginal and multivariate
clustering
- arxiv url: http://arxiv.org/abs/2212.04009v1
- Date: Wed, 7 Dec 2022 23:54:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 15:16:30.225985
- Title: A parallelizable model-based approach for marginal and multivariate
clustering
- Title(参考訳): 辺縁クラスタリングと多変量クラスタリングのための並列化モデルに基づくアプローチ
- Authors: Miguel de Carvalho, Gabriel Martos Venturini, Andrej Svetlo\v{s}\'ak
- Abstract要約: 本稿では,モデルに基づくクラスタリングの頑健さを生かしたクラスタリング手法を提案する。
我々は、各マージンごとに異なる数のクラスタを持つことができる有限混合モデルを指定することで、この問題に対処する。
提案手法は、完全な(結合した)モデルベースのクラスタリング手法よりも、中程度から高次元の処理に適するだけでなく、計算的にも魅力的である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper develops a clustering method that takes advantage of the
sturdiness of model-based clustering, while attempting to mitigate some of its
pitfalls. First, we note that standard model-based clustering likely leads to
the same number of clusters per margin, which seems a rather artificial
assumption for a variety of datasets. We tackle this issue by specifying a
finite mixture model per margin that allows each margin to have a different
number of clusters, and then cluster the multivariate data using a strategy
game-inspired algorithm to which we call Reign-and-Conquer. Second, since the
proposed clustering approach only specifies a model for the margins -- but
leaves the joint unspecified -- it has the advantage of being partially
parallelizable; hence, the proposed approach is computationally appealing as
well as more tractable for moderate to high dimensions than a `full' (joint)
model-based clustering approach. A battery of numerical experiments on
artificial data indicate an overall good performance of the proposed methods in
a variety of scenarios, and real datasets are used to showcase their
application in practice.
- Abstract(参考訳): 本稿では,モデルに基づくクラスタリングの頑健さを生かしたクラスタリング手法を開発し,その落とし穴の軽減を図る。
まず、標準モデルベースのクラスタリングはマージン毎に同じ数のクラスタを発生させる可能性があることに留意する。
各マージンが異なる数のクラスタを持つことを可能にするマージン当たりの有限混合モデルを定義し、戦略ゲームに触発されたアルゴリズムを使って多変量データをクラスタ化する。
第二に、提案されたクラスタリングアプローチは、マージンのモデルのみを指定するが、ジョイントを未定のままにしておくので、部分的に並列化できるという利点がある。
人工データに関する数値実験のバッテリは、提案手法の様々なシナリオにおける全体的な優れた性能を示し、実際のデータセットを使用して、その応用を実演する。
関連論文リスト
- Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - A Generalized Framework for Predictive Clustering and Optimization [18.06697544912383]
クラスタリングは強力で広く使われているデータサイエンスツールです。
本稿では,予測クラスタリングのための一般化最適化フレームワークを定義する。
また,大域的最適化のためにMILP(mixed-integer linear programming)を利用する共同最適化手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T19:56:51Z) - Time series clustering based on prediction accuracy of global
forecasting models [0.0]
本稿では,時系列のモデルに基づくクラスタリング手法を提案する。
文献で提案されているほとんどの手法とは異なり、この手法はクラスタリング分割を構成する主要な要素として予測精度を考慮している。
シミュレーション実験により,クラスタリングの有効性と予測精度の両面で,本手法はいくつかの代替手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-04-30T13:12:19Z) - Variable Clustering via Distributionally Robust Nodewise Regression [7.289979396903827]
可変クラスタリングのための多要素ブロックモデルについて検討し、ノード単位回帰の分布的ロバストなバージョンを定式化することにより、正規化サブスペースクラスタリングに接続する。
我々は凸緩和を導出し、ロバスト領域のサイズを選択するためのガイダンスを与え、そのためデータに基づいて正規化重み付けパラメータを提案し、実装のためのADMMアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-15T16:23:25Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
我々は,非負の特徴特性を活用し,多視点情報を統合された共同学習フレームワークに組み込む,新しいクラスタリングモデルを定式化する。
また、深層機能に基づいたクラスタリングデータに対するマルチモデル非負グラフベースのアプローチを初めて検討する。
論文 参考訳(メタデータ) (2022-11-03T08:18:27Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
異種環境における分散学習のためのコミュニケーション効率化手法のファミリーを提案する。
ユーザによるローカル計算に基づくワンショットアプローチと、サーバにおけるクラスタリングベースのアグリゲーションステップは、強力な学習保証を提供する。
厳密な凸問題に対しては,ユーザ毎のデータ点数がしきい値を超える限り,提案手法はサンプルサイズの観点から順序最適平均二乗誤差率を達成する。
論文 参考訳(メタデータ) (2022-09-22T09:04:10Z) - clusterBMA: Bayesian model averaging for clustering [1.2021605201770345]
本稿では、教師なしクラスタリングアルゴリズムの結果の重み付きモデル平均化を可能にするクラスタBMAを提案する。
クラスタリング内部検証基準を用いて、各モデルの結果の重み付けに使用される後続モデル確率の近似を開発する。
シミュレーションデータ上での他のアンサンブルクラスタリングメソッドのパフォーマンスに加えて、クラスタBMAは平均クラスタへの確率的アロケーションを含むユニークな機能を提供する。
論文 参考訳(メタデータ) (2022-09-09T04:55:20Z) - Personalized Federated Learning via Convex Clustering [72.15857783681658]
本稿では,局所凸型ユーザコストを用いた個人化フェデレーション学習のためのアルゴリズム群を提案する。
提案するフレームワークは,異なるユーザのモデルの違いをペナル化する凸クラスタリングの一般化に基づいている。
論文 参考訳(メタデータ) (2022-02-01T19:25:31Z) - Deep Conditional Gaussian Mixture Model for Constrained Clustering [7.070883800886882]
制約付きクラスタリングは、部分的にラベル付けされたデータの増加量に関する事前情報を利用することができる。
本稿では、直感的で解釈可能で、勾配変動推論の枠組みで効率的に訓練できる制約付きクラスタリングのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-11T13:38:09Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
本稿では,適応グラフ正規化に基づくマルチビュークラスタリング手法を提案する。
5つの多視点ベンチマークの実験結果から,提案手法が他の最先端手法をクリアマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-08-23T08:25:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。