An Efficient Quantum Readout Error Mitigation for Sparse Measurement
Outcomes of Near-term Quantum Devices
- URL: http://arxiv.org/abs/2201.11046v2
- Date: Fri, 18 Feb 2022 07:06:52 GMT
- Title: An Efficient Quantum Readout Error Mitigation for Sparse Measurement
Outcomes of Near-term Quantum Devices
- Authors: Bo Yang, Rudy Raymond, Shumpei Uno
- Abstract summary: We propose two efficient quantum readout error mitigation methods for quantum devices with tens of qubits and more.
The main targets of the proposed methods are the sparse probability distributions where only a few states are dominant.
The proposed methods can be applied to mitigate GHZ states up to 65 qubits on IBM Quantum devices within a few seconds to confirm the existence of a 29-qubit GHZ state with fidelity larger than 0.5.
- Score: 7.9958720589619094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The readout error on the near-term quantum devices is one of the dominant
noise factors, which can be mitigated by classical post-processing called
quantum readout error mitigation (QREM). The standard QREM method applies the
inverse of noise calibration matrix to the outcome probability distribution
using exponential computational resources to the system size. Hence this
standard approach is not applicable to the current quantum devices with tens of
qubits and more. We propose two efficient QREM methods on such devices whose
computational complexity is $O(ns^2)$ for probability distributions on
measuring $n$ qubits with $s$ shots. The main targets of the proposed methods
are the sparse probability distributions where only a few states are dominant.
We compare the proposed methods with several recent QREM methods on the
following three cases: expectation values of GHZ state, its fidelities, and the
estimation error of maximum likelihood amplitude estimation (MLAE) algorithm
with modified Grover iterator. The two cases of the GHZ state are on real IBM
quantum devices, while the third is by numerical simulation. The proposed
methods can be applied to mitigate GHZ states up to 65 qubits on IBM Quantum
devices within a few seconds to confirm the existence of a 29-qubit GHZ state
with fidelity larger than 0.5. The proposed methods also succeed in the
estimation of the amplitude in MLAE with the modified Grover operator where
other QREM methods fail.
Related papers
- A quantum implementation of high-order power method for estimating geometric entanglement of pure states [39.58317527488534]
This work presents a quantum adaptation of the iterative higher-order power method for estimating the geometric measure of entanglement of multi-qubit pure states.
It is executable on current (hybrid) quantum hardware and does not depend on quantum memory.
We study the effect of noise on the algorithm using a simple theoretical model based on the standard depolarising channel.
arXiv Detail & Related papers (2024-05-29T14:40:24Z) - $\mathcal{PT}$-symmetric mapping of three states and its implementation on a cloud quantum processor [0.9599644507730107]
We develop a new $mathcalPT$-symmetric approach for mapping three pure qubit states.
We show consistency with the Hermitian case, conservation of average projections on reference vectors, and Quantum Fisher Information.
Our work unlocks new doors for applying $mathcalPT$-symmetry in quantum communication, computing, and cryptography.
arXiv Detail & Related papers (2023-12-27T18:51:33Z) - Error Mitigation-Aided Optimization of Parameterized Quantum Circuits:
Convergence Analysis [42.275148861039895]
Variational quantum algorithms (VQAs) offer the most promising path to obtaining quantum advantages via noisy processors.
gate noise due to imperfections and decoherence affects the gradient estimates by introducing a bias.
Quantum error mitigation (QEM) techniques can reduce the estimation bias without requiring any increase in the number of qubits.
QEM can reduce the number of required iterations, but only as long as the quantum noise level is sufficiently small.
arXiv Detail & Related papers (2022-09-23T10:48:04Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Quantum error mitigation via matrix product operators [27.426057220671336]
Quantum error mitigation (QEM) can suppress errors in measurement results via repeated experiments and post decomposition of data.
MPO representation increases the accuracy of modeling noise without consuming more experimental resources.
Our method is hopeful of being applied to circuits in higher dimensions with more qubits and deeper depth.
arXiv Detail & Related papers (2022-01-03T16:57:43Z) - Demonstration of the Rodeo Algorithm on a Quantum Computer [0.0]
Rodeo algorithm is an efficient algorithm for eigenstate preparation and eigenvalue estimation for any observable on a quantum computer.
It is exponentially faster than well-known algorithms such as phase estimation and adiabatic evolution for eigenstate preparation.
It has yet to be implemented on an actual quantum device.
arXiv Detail & Related papers (2021-10-14T22:16:47Z) - Implementing Quantum Finite Automata Algorithms on Noisy Devices [0.0]
We present improved circuit based implementations for QFA algorithms recognizing the $ MOD_p $ problem using the Qiskit framework.
We run the circuits on real IBM quantum devices but due to the limitation of the real quantum devices in the NISQ era, the results are heavily affected by the noise.
arXiv Detail & Related papers (2021-05-13T10:51:28Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z) - Minimizing estimation runtime on noisy quantum computers [0.0]
"engineered likelihood function" (ELF) is used for carrying out Bayesian inference.
We show how the ELF formalism enhances the rate of information gain in sampling as the physical hardware transitions from the regime of noisy quantum computers.
This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond.
arXiv Detail & Related papers (2020-06-16T17:46:18Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.