Unambiguous joint detection of spatially separated properties of a
single photon in the two arms of an interferometer
- URL: http://arxiv.org/abs/2201.11425v1
- Date: Thu, 27 Jan 2022 10:23:16 GMT
- Title: Unambiguous joint detection of spatially separated properties of a
single photon in the two arms of an interferometer
- Authors: Surya Narayan Sahoo, Sanchari Chakraborti, Som Kanjilal, Dipankar
Home, Alex Matzkin, Urbasi Sinha
- Abstract summary: The quantum superposition principle implies that a particle entering an interferometer evolves by simultaneously taking both arms.
For a fixed state measured at the output port, certain particle properties can be associated with only one or the other path.
We report observation of the spatial and polarization degrees of freedom of a single photon in the two arms of an interferometer.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum superposition principle implies that a particle entering an
interferometer evolves by simultaneously taking both arms. If a
non-destructive, minimally-disturbing interaction coupling a particle property
to a pointer is implemented on each arm while maintaining the path
superposition, quantum theory predicts that, for a fixed state measured at the
output port, certain particle properties can be associated with only one or the
other path. Here we report realization of this prediction through joint
observation of the spatial and polarization degrees of freedom of a single
photon in the two arms of an interferometer. Significant pointer shifts
($\sim$50 microns) are observed in each arm. This observation, involving
coupling distinct properties of a quantum system in spatially separated
regions, opens new possibilities for quantum information protocols and for
tests of quantumness for mesoscopic systems.
Related papers
- Threshold in quantum correlated interference for a particle interacting with two scatterers [0.0]
A measurement of this threshold can verify quantum correlations in many-body systems.
The decoherence of a mesoscopic scatterer is determined by this threshold without it having to traverse slits or beamsplitters.
arXiv Detail & Related papers (2024-08-14T11:34:34Z) - Corner Charge Fluctuation as an Observable for Quantum Geometry and Entanglement in Two-dimensional Insulators [0.5120567378386615]
We show that for generic lattice systems of interacting particles, the corner charge fluctuation is directly related to quantum geometry.
A model of a compact obstructed atomic insulator is introduced to illustrate this effect analytically.
numerical verification for various Chern insulator models further demonstrate the experimental relevance of the corner charge fluctuation in a finite-size quantum simulator.
arXiv Detail & Related papers (2024-06-24T18:00:03Z) - Essential role of destructive interference in the gravitationally
induced entanglement [0.0]
The present paper analyzes the gravitationally induced entanglement as a pure interference effect.
The non-maximally entangled state can be extremely effective for experimental testing.
arXiv Detail & Related papers (2024-01-09T12:24:32Z) - On the Preservation and Manifestation of Quantum Entanglement [0.0]
Bell experiments have confirmed that quantum entanglement is an inseparable correlation but there is no faster-than-light influence when a local measurement is performed.
We show here that even though the inseparable correlation may be initially created by previous physical interaction between the two particles, the preservation and manifestation of such inseparable correlation are achieved through extremizing an information metric.
arXiv Detail & Related papers (2023-11-10T07:33:13Z) - Entanglement-induced collective many-body interference [62.22849132943891]
We propose an interferometric setting through which N-particle interference can be observed, while any interference of lower orders is strictly suppressed.
We experimentally demonstrate this effect in a four-photon interferometer, where the interference is nonlocal, in principle.
A joint detection of all four photons identifies a high-visibility interference pattern varying as a function of their collective four-particle phase, a genuine four-body property.
arXiv Detail & Related papers (2023-10-12T18:00:02Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.