On the Preservation and Manifestation of Quantum Entanglement
- URL: http://arxiv.org/abs/2311.08420v2
- Date: Sun, 28 Jan 2024 04:29:16 GMT
- Title: On the Preservation and Manifestation of Quantum Entanglement
- Authors: Jianhao M. Yang
- Abstract summary: Bell experiments have confirmed that quantum entanglement is an inseparable correlation but there is no faster-than-light influence when a local measurement is performed.
We show here that even though the inseparable correlation may be initially created by previous physical interaction between the two particles, the preservation and manifestation of such inseparable correlation are achieved through extremizing an information metric.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bell experiments have confirmed that quantum entanglement is an inseparable
correlation but there is no faster-than-light influence between two entangled
particles when a local measurement is performed. However, how such an
inseparable correlation is maintained and manifested when the two entangled
particle are space-like separated is still not well understood. The recently
proposed extended least action principle for quantum mechanics brings new
insights to this question. By applying this principle, we show here that even
though the inseparable correlation may be initially created by previous
physical interaction between the two particles, the preservation and
manifestation of such inseparable correlation are achieved through extremizing
an information metric that measures the additional observable information of
the bipartite system due to vacuum fluctuations. This is physically realized
even though there is no further interaction when the two particles move apart,
and the underlying vacuum fluctuations are local. In other words, the
propagation of inseparable correlation in quantum theory is realized by an
information requirement and through a local mechanism. An example of two
entangled free particles described by Gaussian wave packets is provided to
illustrate these results.
Related papers
- Measuring the Evolution of Entanglement in Compton Scattering [101.11630543545151]
The behavior of quantum entanglement during scattering is identical to the behavior of initially classically correlated photons up to a constant factor equal to two.
Our dedicated experiment with photons confirms these results and explains the "Puzzle of Decoherence" observed recently.
arXiv Detail & Related papers (2024-06-20T14:21:23Z) - The effects of detuning on entropic uncertainty bound and quantum
correlations in dissipative environment [0.0]
We will use the entropic uncertainty relation in the presence of quantum memory.
The effects of the detuning between the transition frequency of a quantum memory and the center frequency of a cavity on entrpic uncertainty bound and quantum correlation between quantum memory and measured particle will be studied.
arXiv Detail & Related papers (2024-01-18T08:04:53Z) - Non-Rayleigh signal of interacting quantum particles [0.0]
The dynamics of two interacting quantum particles on a weakly disordered chain is investigated.
The fluctuation profile of the signal can discern whether the interacting parties are behaving like identical bosons, fermions, or distinguishable particles.
arXiv Detail & Related papers (2023-05-02T18:59:37Z) - Topologically bound states, non-Hermitian skin effect and flat bands,
induced by two-particle interaction [91.3755431537592]
We study theoretically repelling quantum states of two spinless particles in a one-dimensional tight-binding model.
We demonstrate, that when the particles are not identical, their interaction drives nontrivial correlated two-particle states.
arXiv Detail & Related papers (2022-11-11T07:34:54Z) - Unambiguous joint detection of spatially separated properties of a
single photon in the two arms of an interferometer [0.0]
The quantum superposition principle implies that a particle entering an interferometer evolves by simultaneously taking both arms.
For a fixed state measured at the output port, certain particle properties can be associated with only one or the other path.
We report observation of the spatial and polarization degrees of freedom of a single photon in the two arms of an interferometer.
arXiv Detail & Related papers (2022-01-27T10:23:16Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Experimental study of decoherence of the two-mode squeezed vacuum state
via second harmonic generation [19.5474623165562]
We report a novel scheme on the study of decoherence of a two-mode squeezed vacuum state via its second harmonic generation signal.
Our scheme can directly extract the decoherence of the phase-sensitive quantum correlation $langle hatahatbrangle$ between two entangled modes.
This is an experimental study on the decoherence effect of a squeezed vacuum state, which has been rarely investigated.
arXiv Detail & Related papers (2020-12-22T05:38:24Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z) - Spreading of correlations in Markovian open quantum systems [0.0]
We show that the quasi-particle picture remains valid for open quantum systems.
For free fermions with gain/loss dissipation we provide formulae fully describing incoherent and quasiparticle contributions.
arXiv Detail & Related papers (2020-02-21T19:42:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.