論文の概要: Human-centered mechanism design with Democratic AI
- arxiv url: http://arxiv.org/abs/2201.11441v1
- Date: Thu, 27 Jan 2022 10:56:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-28 19:44:48.139134
- Title: Human-centered mechanism design with Democratic AI
- Title(参考訳): 民主的aiを用いた人間中心機構設計
- Authors: Raphael Koster, Jan Balaguer, Andrea Tacchetti, Ari Weinstein, Tina
Zhu, Oliver Hauser, Duncan Williams, Lucy Campbell-Gillingham, Phoebe
Thacker, Matthew Botvinick and Christopher Summerfield
- Abstract要約: 私たちは、Democratic AIと呼ばれる、ループ内の人間研究パイプラインを開発します。
強化学習は、人間が多数派で好む社会メカニズムを設計するために用いられる。
人間の好みを最適化することによって、民主的AIは、価値に合わせた政策革新の有望な方法になり得る。
- 参考スコア(独自算出の注目度): 9.832311262933285
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building artificial intelligence (AI) that aligns with human values is an
unsolved problem. Here, we developed a human-in-the-loop research pipeline
called Democratic AI, in which reinforcement learning is used to design a
social mechanism that humans prefer by majority. A large group of humans played
an online investment game that involved deciding whether to keep a monetary
endowment or to share it with others for collective benefit. Shared revenue was
returned to players under two different redistribution mechanisms, one designed
by the AI and the other by humans. The AI discovered a mechanism that redressed
initial wealth imbalance, sanctioned free riders, and successfully won the
majority vote. By optimizing for human preferences, Democratic AI may be a
promising method for value-aligned policy innovation.
- Abstract(参考訳): 人間の価値に合わせた人工知能(AI)の構築は未解決の問題である。
そこで我々は,人間に好まれる社会メカニズムの設計に強化学習を用いる,Democratic AIという,ループ内人間研究パイプラインを開発した。
大勢の人間がオンライン投資ゲームを行い、金銭的支援を維持するか、集団的利益のために他人と共有するかを決めました。
シェアされた収益は、2つの異なる再分配メカニズムの下でプレイヤーに返却された。
AIは、最初の富の均衡を遅らせ、自由な乗客を制裁し、多数決に勝ったメカニズムを発見した。
人間の好みを最適化することによって、民主的AIは、価値に合わせた政策革新の有望な方法になり得る。
関連論文リスト
- Rolling in the deep of cognitive and AI biases [1.556153237434314]
我々は、AIが設計、開発、デプロイされる状況とは切り離せない社会技術システムとして理解する必要があると論じる。
我々は、人間の認知バイアスがAIフェアネスの概観の中核となる急進的な新しい方法論に従うことで、この問題に対処する。
我々は、人間にAIバイアスを正当化する新しいマッピングを導入し、関連する公正度と相互依存を検出する。
論文 参考訳(メタデータ) (2024-07-30T21:34:04Z) - Navigating AI Fallibility: Examining People's Reactions and Perceptions of AI after Encountering Personality Misrepresentations [7.256711790264119]
ハイパーパーソナライズされたAIシステムは、パーソナライズされたレコメンデーションを提供するために人々の特性をプロファイルする。
これらのシステムは、人々の最も個人的な特性を推測する際にエラーに免疫がない。
人格の誤表現に遭遇した後、人々がどのように反応し、AIを知覚するかを検討するための2つの研究を行った。
論文 参考訳(メタデータ) (2024-05-25T21:27:15Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AIは、人間とAIアルゴリズムが相互に連続的に影響を及ぼすプロセスである。
本稿では,AIと複雑性科学の交点における新たな研究分野の基盤として,Coevolution AIを紹介した。
論文 参考訳(メタデータ) (2023-06-23T18:10:54Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Best-Response Bayesian Reinforcement Learning with Bayes-adaptive POMDPs
for Centaurs [22.52332536886295]
本稿では,人間とAIの相互作用を逐次ゲームとして新たに定式化する。
このケースでは、有界人間によるより良い意思決定を支援するというAIの問題は、ベイズ対応のPOMDPに還元される。
我々は、機械が自身の限界と人間の助けを借りて改善する方法について議論する。
論文 参考訳(メタデータ) (2022-04-03T21:00:51Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - The Turing Trap: The Promise & Peril of Human-Like Artificial
Intelligence [1.9143819780453073]
人間のような人工知能の利点には、生産性の上昇、余暇の増加、そしておそらく最も重要なのは、私たちの心をよりよく理解することが含まれる。
しかし、あらゆるタイプのAIが人間に似ているわけではない。実際、最も強力なシステムの多くは、人間とは大きく異なる。
機械が人間の労働の代用となるにつれ、労働者は経済的・政治的交渉力を失う。
対照的に、AIが人間を模倣するのではなく強化することに焦点を当てている場合、人間は創造された価値の共有を主張する力を保持します。
論文 参考訳(メタデータ) (2022-01-11T21:07:17Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Multi-Principal Assistance Games [11.85513759444069]
社会的選択論や投票理論における不合理性定理はそのようなゲームに適用できる。
我々は特に、人間がまず腕の好みを示すために行動するバンディットの見習いゲームを分析する。
本稿では,選好推論と社会福祉最適化を組み合わせるために,システムの共有制御を用いた社会的選択手法を提案する。
論文 参考訳(メタデータ) (2020-07-19T00:23:25Z) - Is the Most Accurate AI the Best Teammate? Optimizing AI for Teamwork [54.309495231017344]
AIシステムは人間中心の方法でトレーニングされ、チームのパフォーマンスに直接最適化されるべきである、と私たちは主張する。
我々は,AIレコメンデーションを受け入れるか,あるいはタスク自体を解決するかを選択する,特定のタイプのAIチームを提案する。
実世界の高精度データセット上での線形モデルと非線形モデルによる実験は、AIが最も正確であることは、最高のチームパフォーマンスに繋がらないことを示している。
論文 参考訳(メタデータ) (2020-04-27T19:06:28Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
ケース固有のモデル情報を明らかにする特徴が、信頼度を調整し、人間とAIのジョイントパフォーマンスを向上させることができるかどうかを検討する。
信頼スコアは、AIモデルに対する人々の信頼を校正するのに役立ちますが、信頼の校正だけでは、AI支援による意思決定を改善するには不十分です。
論文 参考訳(メタデータ) (2020-01-07T15:33:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。