論文の概要: Model Agnostic Interpretability for Multiple Instance Learning
- arxiv url: http://arxiv.org/abs/2201.11701v2
- Date: Fri, 28 Jan 2022 09:58:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-31 12:43:20.529326
- Title: Model Agnostic Interpretability for Multiple Instance Learning
- Title(参考訳): 複数インスタンス学習におけるモデル非依存解釈可能性
- Authors: Joseph Early, Christine Evers and Sarvapali Ramchurn
- Abstract要約: MIL(Multiple Instance Learning)では、モデルはインスタンスのバッグを使用してトレーニングされる。
本研究では,MILモデルを解釈するための重要な要件を確立する。
そして、これらの要件を満たすいくつかのモデルに依存しないアプローチを開発します。
- 参考スコア(独自算出の注目度): 7.412445894287708
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In Multiple Instance Learning (MIL), models are trained using bags of
instances, where only a single label is provided for each bag. A bag label is
often only determined by a handful of key instances within a bag, making it
difficult to interpret what information a classifier is using to make
decisions. In this work, we establish the key requirements for interpreting MIL
models. We then go on to develop several model-agnostic approaches that meet
these requirements. Our methods are compared against existing inherently
interpretable MIL models on several datasets, and achieve an increase in
interpretability accuracy of up to 30%. We also examine the ability of the
methods to identify interactions between instances and scale to larger
datasets, improving their applicability to real-world problems.
- Abstract(参考訳): 複数のインスタンス学習(mil:multiple instance learning)では、モデルは、各バッグに単一のラベルのみを提供する、インスタンスの袋を使ってトレーニングされる。
バッグラベルは、しばしばバッグ内の一握りのキーインスタンスによってのみ決定されるため、分類器が意思決定に使用する情報を理解するのが困難である。
本研究では,MILモデルを解釈するための重要な要件を確立する。
次に、これらの要件を満たすモデルに依存しないアプローチをいくつか開発します。
提案手法は,複数のデータセット上の既存の解釈可能なMILモデルと比較し,解釈可能性の精度を最大30%向上させる。
また、インスタンス間の相互作用を識別し、より大きなデータセットにスケールする手法の能力を検証し、実世界の問題への適用性を向上させる。
関連論文リスト
- Do Membership Inference Attacks Work on Large Language Models? [145.90022632726883]
メンバーシップ推論攻撃(MIA)は、特定のデータポイントがターゲットモデルのトレーニングデータのメンバーであるかどうかを予測しようとする。
我々は、Pileで訓練された言語モデルに対して、MIAの大規模評価を行い、そのパラメータは160Mから12Bまでである。
様々な LLM サイズや領域にまたがるほとんどの設定において,MIA はランダムな推測よりもほとんど優れていないことがわかった。
論文 参考訳(メタデータ) (2024-02-12T17:52:05Z) - A General Model for Aggregating Annotations Across Simple, Complex, and
Multi-Object Annotation Tasks [51.14185612418977]
ラベルの品質を改善するための戦略は、複数のアノテータに同じ項目にラベルを付け、ラベルを集約するように求めることである。
特定のタスクに対して様々なbespokeモデルが提案されているが、様々な複雑なタスクを一般化するアグリゲーションメソッドを導入するのはこれが初めてである。
本論では,3つの新たな研究課題について検討し,今後の課題を概説する。
論文 参考訳(メタデータ) (2023-12-20T21:28:35Z) - Reproducibility in Multiple Instance Learning: A Case For Algorithmic
Unit Tests [59.623267208433255]
多重インスタンス学習(MIL)は、正と負のラベルと入力の「バグ」を持つ分類問題のサブドメインである。
本研究では,最も顕著な深層MILモデルの5つについて検討し,いずれも標準MILの仮定を尊重していないことを明らかにする。
提案した"アルゴリズムユニットテスト"によってこの問題を特定し,実証する。そこでは,MILを尊重するモデルによって解決可能な,合成データセットを作成する。
論文 参考訳(メタデータ) (2023-10-27T03:05:11Z) - Feature Re-calibration based MIL for Whole Slide Image Classification [7.92885032436243]
全スライド画像(WSI)分類は疾患の診断と治療の基本的な課題である。
本稿では,WSI バッグ (インスタンス) の分布を,最大インスタンス (クリティカル) 特性の統計値を用いて再校正することを提案する。
位置符号化モジュール(PEM)を用いて空間・形態情報をモデル化し,マルチヘッド自己アテンション(PSMA)をトランスフォーマーエンコーダでプーリングする。
論文 参考訳(メタデータ) (2022-06-22T07:00:39Z) - Training image classifiers using Semi-Weak Label Data [26.04162590798731]
多重インスタンス学習(MIL)では、弱ラベルがバッグレベルで提供され、存在/存在情報のみが知られる。
本稿では,この問題を軽減するため,新たな半弱ラベル学習パラダイムを提案する。
半弱ラベルから学習する問題に対処する2段階のフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-19T03:06:07Z) - A Visual Mining Approach to Improved Multiple-Instance Learning [3.611492083936225]
MIL(Multiple-Instance Learning)は、オブジェクト(インスタンス)の集合(バッグ)を分類し、ラベルをバッグのみに割り当てることを目的とした機械学習のパラダイムである。
MILをサポートするため,マルチスケールのツリーベースビジュアライゼーションを提案する。
木の最初のレベルはバッグを表し、2番目のレベルは各バッグに属するインスタンスを表します。
論文 参考訳(メタデータ) (2020-12-14T05:12:43Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
本稿では,名前付きエンティティ認識(NER)タスクに対する一般的な評価手法を提案する。
提案手法は,モデルとデータセットの違いと,それらの間の相互作用を解釈することを可能にする。
分析ツールを利用可能にすることで、将来の研究者が同様の分析を実行し、この分野の進歩を促進することができる。
論文 参考訳(メタデータ) (2020-11-13T10:53:27Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
オブジェクト検出とセグメンテーションの方法は、トレーニングのための大規模インスタンスレベルのアノテーションに依存します。
本稿では,直感的かつ統一的な半教師付きモデルを提案する。
論文 参考訳(メタデータ) (2020-06-12T22:45:47Z) - Dual-stream Maximum Self-attention Multi-instance Learning [11.685285490589981]
MIL(Multi-Instance Learning)は、インスタンスレベルのラベルが利用できない間に単一のクラスラベルがインスタンスのバッグに割り当てられる弱い教師付き学習の一種である。
ニューラルネットワークによりパラメータ化されたDSMILモデル(Dual-stream maximum self-attention MIL model)を提案する。
提案手法は,最高のMIL手法と比較して優れた性能を示し,ベンチマークMILデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2020-06-09T22:44:58Z) - Weakly-Supervised Action Localization with Expectation-Maximization
Multi-Instance Learning [82.41415008107502]
弱教師付きアクションローカライゼーションでは、ビデオレベルアクションラベルのみを与えられたビデオ内のアクションセグメントをローカライズするモデルをトレーニングする必要がある。
バッグ(ビデオ)には複数のインスタンス(アクションセグメント)が含まれている。
我々のEM-MILアプローチは、学習目標とMIL仮定の両方をより正確にモデル化することを示します。
論文 参考訳(メタデータ) (2020-03-31T23:36:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。