JPEG Processing Neural Operator for Backward-Compatible Coding
- URL: http://arxiv.org/abs/2507.23521v1
- Date: Thu, 31 Jul 2025 13:04:55 GMT
- Title: JPEG Processing Neural Operator for Backward-Compatible Coding
- Authors: Woo Kyoung Han, Yongjun Lee, Byeonghun Lee, Sang Hyun Park, Sunghoon Im, Kyong Hwan Jin,
- Abstract summary: We present a next-generation JPEG algorithm that maintains full backward compatibility with the current JPEG format.<n>Our JPNeO improves chroma component preservation and enhances reconstruction fidelity compared to existing artifact removal methods.
- Score: 17.84579881687547
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite significant advances in learning-based lossy compression algorithms, standardizing codecs remains a critical challenge. In this paper, we present the JPEG Processing Neural Operator (JPNeO), a next-generation JPEG algorithm that maintains full backward compatibility with the current JPEG format. Our JPNeO improves chroma component preservation and enhances reconstruction fidelity compared to existing artifact removal methods by incorporating neural operators in both the encoding and decoding stages. JPNeO achieves practical benefits in terms of reduced memory usage and parameter count. We further validate our hypothesis about the existence of a space with high mutual information through empirical evidence. In summary, the JPNeO functions as a high-performance out-of-the-box image compression pipeline without changing source coding's protocol. Our source code is available at https://github.com/WooKyoungHan/JPNeO.
Related papers
- Pathology Image Compression with Pre-trained Autoencoders [52.208181380986524]
Whole Slide Images in digital histopathology pose significant storage, transmission, and computational efficiency challenges.<n>Standard compression methods, such as JPEG, reduce file sizes but fail to preserve fine-grained phenotypic details critical for downstream tasks.<n>In this work, we repurpose autoencoders (AEs) designed for Latent Diffusion Models as an efficient learned compression framework for pathology images.
arXiv Detail & Related papers (2025-03-14T17:01:17Z) - JDEC: JPEG Decoding via Enhanced Continuous Cosine Coefficients [17.437568540883106]
We propose a practical approach to JPEG image decoding, utilizing a local implicit neural representation with continuous cosine formulation.
Our proposed network achieves state-of-the-art performance in flexible color image JPEG artifact removal tasks.
arXiv Detail & Related papers (2024-04-03T03:28:04Z) - Learned Lossless Compression for JPEG via Frequency-Domain Prediction [50.20577108662153]
We propose a novel framework for learned lossless compression of JPEG images.
To enable learning in the frequency domain, DCT coefficients are partitioned into groups to utilize implicit local redundancy.
An autoencoder-like architecture is designed based on the weight-shared blocks to realize entropy modeling of grouped DCT coefficients.
arXiv Detail & Related papers (2023-03-05T13:15:28Z) - Learned Lossless JPEG Transcoding via Joint Lossy and Residual
Compression [21.205453851414248]
We propose a new framework to recompress the compressed JPEG image in the DCT domain.
Our proposed framework can achieve about 21.49% bits saving in average based on JPEG compression.
Our experiments on multiple datasets have demonstrated that our proposed framework can achieve about 21.49% bits saving in average based on JPEG compression.
arXiv Detail & Related papers (2022-08-24T17:12:00Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Learning to Improve Image Compression without Changing the Standard
Decoder [100.32492297717056]
We propose learning to improve the encoding performance with the standard decoder.
Specifically, a frequency-domain pre-editing method is proposed to optimize the distribution of DCT coefficients.
We do not modify the JPEG decoder and therefore our approach is applicable when viewing images with the widely used standard JPEG decoder.
arXiv Detail & Related papers (2020-09-27T19:24:42Z) - End-to-End JPEG Decoding and Artifacts Suppression Using Heterogeneous
Residual Convolutional Neural Network [0.0]
Existing deep learning models separate JPEG artifacts suppression from the decoding protocol as independent task.
We take one step forward to design a true end-to-end heterogeneous residual convolutional neural network (HR-CNN) with spectrum decomposition and heterogeneous reconstruction mechanism.
arXiv Detail & Related papers (2020-07-01T17:44:00Z) - Learning Better Lossless Compression Using Lossy Compression [100.50156325096611]
We leverage the powerful lossy image compression algorithm BPG to build a lossless image compression system.
We model the distribution of the residual with a convolutional neural network-based probabilistic model that is conditioned on the BPG reconstruction.
Finally, the image is stored using the concatenation of the bitstreams produced by BPG and the learned residual coder.
arXiv Detail & Related papers (2020-03-23T11:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.