論文の概要: Classification of White Blood Cell Leukemia with Low Number of
Interpretable and Explainable Features
- arxiv url: http://arxiv.org/abs/2201.11864v1
- Date: Fri, 28 Jan 2022 00:08:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-01 09:28:22.584255
- Title: Classification of White Blood Cell Leukemia with Low Number of
Interpretable and Explainable Features
- Title(参考訳): 低頻度かつ説明可能な特徴を有する白血球白血病の分類
- Authors: William Franz Lamberti
- Abstract要約: 白血球(WBC)白血病は画像ベース分類によって検出される。
畳み込みニューラルネットワークは、細胞のイメージを悪性または正常に分類するために必要な特徴を学ぶために使用される。
このタイプのモデルは、多数のパラメータを学習し、解釈と説明が困難である。
XAIモデルは、説明可能な機能と解釈可能な機能のみを使用し、4.38%以上の性能で他のアプローチと高い競争力を持つ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: White Blood Cell (WBC) Leukaemia is detected through image-based
classification. Convolutional Neural Networks are used to learn the features
needed to classify images of cells a malignant or healthy. However, this type
of model requires learning a large number of parameters and is difficult to
interpret and explain. Explainable AI (XAI) attempts to alleviate this issue by
providing insights to how models make decisions. Therefore, we present an XAI
model which uses only 24 explainable and interpretable features and is highly
competitive to other approaches by outperforming them by about 4.38\%. Further,
our approach provides insight into which variables are the most important for
the classification of the cells. This insight provides evidence that when labs
treat the WBCs differently, the importance of various metrics changes
substantially. Understanding the important features for classification is vital
in medical imaging diagnosis and, by extension, understanding the AI models
built in scientific pursuits.
- Abstract(参考訳): 白血球(WBC)白血病は画像ベース分類によって検出される。
畳み込みニューラルネットワークは、細胞の画像を悪性または健康に分類するために必要な特徴を学ぶために使用される。
しかし、この種のモデルは多数のパラメータを学習する必要があるため、解釈や説明が困難である。
説明可能なAI(XAI)は、モデルが意思決定を行う方法に関する洞察を提供することで、この問題を緩和しようとする。
そこで,本研究では,説明可能かつ解釈可能な特徴を24個しか用いず,他の手法と比較して約4.38\%の精度で高いxaiモデルを提案する。
さらに,本手法は,細胞分類においてどの変数が最も重要なのかを考察する。
この洞察は、研究室がWBCを別々に扱うと、様々な指標の重要性が大幅に変化することを示す。
分類の重要な特徴を理解することは、医学的画像診断や、科学的な追求のために構築されたAIモデルの理解において不可欠である。
関連論文リスト
- Neural Cellular Automata for Lightweight, Robust and Explainable Classification of White Blood Cell Images [40.347953893940044]
ニューラルセルオートマトン(NCA)を用いた白血球分類の新しいアプローチを提案する。
NCAに基づく手法はパラメータの面で著しく小さく,ドメインシフトに対する堅牢性を示す。
その結果,NAAは画像分類に利用でき,従来の手法の課題に対処できることがわかった。
論文 参考訳(メタデータ) (2024-04-08T14:59:53Z) - Pathologist-Like Explanations Unveiled: an Explainable Deep Learning
System for White Blood Cell Classification [1.516937009186805]
HemaXは5つの属性を使って、病理学者のような説明を生成する、説明可能なディープニューラルネットワークベースのモデルである。
HemaXは、平均的な分類精度が81.08%、ジャカード指数が89.16%で、驚くべき結果が得られる。
論文 参考訳(メタデータ) (2023-10-20T04:59:20Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
本研究では,最先端のグラフベース拡散モデルを用いて生物学的に意味のある細胞グラフを生成する。
本研究では, グラフ拡散モデルを用いて, 3次リンパ構造(TLS)の分布を正確に学習できることを示す。
論文 参考訳(メタデータ) (2023-10-10T14:37:17Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
本稿では,自然言語の概念を用いた堅牢で解釈可能な医用画像分類器を構築するための新しいパラダイムを提案する。
具体的には、まず臨床概念をGPT-4から検索し、次に視覚言語モデルを用いて潜在画像の特徴を明示的な概念に変換する。
論文 参考訳(メタデータ) (2023-10-04T21:57:09Z) - Pixel-Level Explanation of Multiple Instance Learning Models in
Biomedical Single Cell Images [52.527733226555206]
複数のインスタンス学習モデルを説明するための4つの属性法について検討する。
急性骨髄性白血病の2つのデータセットと100万以上の単細胞画像について検討した。
我々は、属性マップと医療専門家の注釈を比較し、モデルの意思決定が人間の基準とどのように異なるかを確認する。
論文 参考訳(メタデータ) (2023-03-15T14:00:11Z) - A survey on automated detection and classification of acute leukemia and
WBCs in microscopic blood cells [6.117084972237769]
白血球 (Leukemia) は、白血球や白血球が骨髄や血液中に拡散する異常な疾患である。
従来の機械学習とディープラーニング技術は、医療画像の診断と分類の精度とスピードを高めるための実践的なロードマップである。
本稿では, 急性白血病およびWBCの検出と分類に関する包括的解析を行った。
論文 参考訳(メタデータ) (2023-03-07T14:26:08Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition [65.77962788209103]
本研究では,長尾データを知識に基づいて複数のクラスサブセットに分割し,クラスサブセット学習を提案する。
モデルがサブセット固有の知識の学習に集中するように強制する。
提案手法は長期網膜疾患認識タスクに有効であることが判明した。
論文 参考訳(メタデータ) (2021-04-22T13:39:33Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
本研究は、COVID-19 LCXRデータ不足のバランスをとるために画像変換を適用するために、文献の体系を活用することを目的としている。
convolutional neural networks(cnns)のようなディープラーニング技術は、健康状態と疾患状態を区別する特徴を選択することができる。
本研究は,CNNアーキテクチャを用いて高速多クラスLCXR分類を94%精度で行う。
論文 参考訳(メタデータ) (2021-04-06T02:01:43Z) - Attention based Multiple Instance Learning for Classification of Blood
Cell Disorders [38.086308180994976]
血液細胞障害患者の血液サンプルを分類するために,注意に基づく多症例学習法を提案する。
各細胞から抽出された特徴により、患者サンプルを4つの血液細胞障害のうち1つに分類する。
注意機構は、各セルの全体的な分類への貢献度を測定し、ネットワークの分類精度と医療専門家に対する解釈可能性を大幅に改善する。
論文 参考訳(メタデータ) (2020-07-22T19:29:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。