論文の概要: A Secure and Efficient Federated Learning Framework for NLP
- arxiv url: http://arxiv.org/abs/2201.11934v1
- Date: Fri, 28 Jan 2022 05:01:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-31 14:50:45.169079
- Title: A Secure and Efficient Federated Learning Framework for NLP
- Title(参考訳): NLPのためのセキュアで効率的なフェデレート学習フレームワーク
- Authors: Jieren Deng, Chenghong Wang, Xianrui Meng, Yijue Wang, Ji Li, Sheng
Lin, Shuo Han, Fei Miao, Sanguthevar Rajasekaran, Caiwen Ding
- Abstract要約: 既存のソリューションは、信頼できるアグリゲータを含むか、重厚な暗号プリミティブを必要とする。
信頼性の高いエンティティを必要としないセキュアで効率的なFLフレームワークSEFLを提案する。
我々は,SEFLが既存のFLソリューションと同等の精度を実現し,提案手法によりランタイム性能を最大13.7倍に向上させることができることを示した。
- 参考スコア(独自算出の注目度): 14.223033623483508
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we consider the problem of designing secure and efficient
federated learning (FL) frameworks. Existing solutions either involve a trusted
aggregator or require heavyweight cryptographic primitives, which degrades
performance significantly. Moreover, many existing secure FL designs work only
under the restrictive assumption that none of the clients can be dropped out
from the training protocol. To tackle these problems, we propose SEFL, a secure
and efficient FL framework that (1) eliminates the need for the trusted
entities; (2) achieves similar and even better model accuracy compared with
existing FL designs; (3) is resilient to client dropouts. Through extensive
experimental studies on natural language processing (NLP) tasks, we demonstrate
that the SEFL achieves comparable accuracy compared to existing FL solutions,
and the proposed pruning technique can improve runtime performance up to 13.7x.
- Abstract(参考訳): 本稿では,安全かつ効率的な連合学習(fl)フレームワークの設計について考察する。
既存のソリューションは、信頼できるアグリゲータを含むか、重厚な暗号プリミティブを必要とする。
さらに、既存のセキュアなFL設計の多くは、トレーニングプロトコルからクライアントを排除できないという制限的な仮定の下でのみ機能します。
これらの問題に対処するために,(1)信頼エンティティの必要性をなくすセキュアで効率的なFLフレームワークSEFLを提案し,(2)既存のFL設計と類似したモデル精度を達成し,(3)クライアントのドロップアウトに対して耐性を持つ。
自然言語処理(NLP)タスクに関する広範な実験的研究を通じて,SEFLが既存のFLソリューションと同等の精度を実現し,提案手法により実行時の性能を最大13.7倍に向上させることができることを示した。
関連論文リスト
- Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
産業用 4.0 システムでは、リソース制約のあるエッジデバイスが頻繁にデータ通信を行う。
本稿では,デジタルツイン (DT) とフェデレーション付きデジタルツイン (FL) 方式を提案する。
提案手法の有効性を数値解析により検証した。
論文 参考訳(メタデータ) (2024-11-04T17:48:02Z) - TPFL: A Trustworthy Personalized Federated Learning Framework via Subjective Logic [13.079535924498977]
フェデレートラーニング(FL)は、データプライバシを保持しながら、分散クライアント間で協調的なモデルトレーニングを可能にする。
ほとんどのFLアプローチは、プライバシ保護に重点を置いているが、信頼性が不可欠であるシナリオでは不足している。
主観的論理を用いた分類タスク用に設計された信頼に足る個人化フェデレーション学習フレームワークを紹介する。
論文 参考訳(メタデータ) (2024-10-16T07:33:29Z) - AEDFL: Efficient Asynchronous Decentralized Federated Learning with
Heterogeneous Devices [61.66943750584406]
異種環境におけるAEDFL(Asynchronous Efficient Decentralized FL framework)を提案する。
まず、FL収束を改善するための効率的なモデル集約手法を用いた非同期FLシステムモデルを提案する。
次に,より優れた精度を実現するために,動的安定化を考慮したモデル更新手法を提案する。
第3に,通信コストと計算コストを大幅に削減する適応スパース学習法を提案する。
論文 参考訳(メタデータ) (2023-12-18T05:18:17Z) - Secure Vertical Federated Learning Under Unreliable Connectivity [22.03946356498099]
我々は、最初のドロップアウト耐性VFLプロトコルであるvFedSecを紹介する。
埋め込み-パディング技術とともに革新的なSecure Layerを使用することで、セキュアで効率的なモデルトレーニングを実現する。
論文 参考訳(メタデータ) (2023-05-26T10:17:36Z) - Optimizing Privacy, Utility and Efficiency in Constrained
Multi-Objective Federated Learning [20.627157142499378]
我々はNSGA-IIとPSLに基づく2つの改良されたCMOFLアルゴリズムを開発した。
3つのプライバシ保護機構のための,プライバシリーク,ユーティリティ損失,トレーニングコストの具体的な測定を設計する。
3つの保護機構のそれぞれで実施した実証実験により,提案アルゴリズムの有効性が示された。
論文 参考訳(メタデータ) (2023-04-29T17:55:38Z) - Reliable Federated Disentangling Network for Non-IID Domain Feature [62.73267904147804]
本稿では、RFedDisと呼ばれる新しい信頼性のあるフェデレーション・ディエンタングリング・ネットワークを提案する。
我々の知る限り、提案するRFedDisは、明らかな不確実性と特徴の混在に基づくFLアプローチを開発する最初の試みである。
提案するRFedDisは,他の最先端FL手法と比較して信頼性の高い優れた性能を提供する。
論文 参考訳(メタデータ) (2023-01-30T11:46:34Z) - Towards a Secure and Reliable Federated Learning using Blockchain [5.910619900053764]
Federated Learning(FL)は、デバイスがプライバシを保護しながらローカルデータセットを使用して学習を行うようなコラボレーショントレーニングを可能にする、分散機械学習技術である。
アドバンテージにもかかわらず、FLは信頼性、トラクタビリティ、匿名性に関連するいくつかの課題に悩まされている。
FLに適したセキュアで信頼性の高いブロックチェーンフレームワーク(SRB-FL)を提案する。
論文 参考訳(メタデータ) (2022-01-27T04:09:53Z) - A Multi-agent Reinforcement Learning Approach for Efficient Client
Selection in Federated Learning [17.55163940659976]
Federated Learning(FL)は、クライアントデバイスが共有モデルを共同で学習することを可能にするトレーニングテクニックである。
モデル精度、処理遅延、通信効率を協調的に最適化する効率的なFLフレームワークを設計する。
実験により、FedMarlは処理遅延と通信コストを大幅に削減して、モデルの精度を大幅に改善できることが示された。
論文 参考訳(メタデータ) (2022-01-09T05:55:17Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
フェデレートラーニング(FL)は、グローバル機械学習モデルをトレーニングするためのソリューションを提供する。
FLは、クライアントデータの分散が非IIDであるときに性能劣化に悩まされる。
本稿では,この劣化に対処するために,新しい適応トレーニングアルゴリズムであるtextttAdaFL$を提案する。
論文 参考訳(メタデータ) (2021-08-12T14:18:05Z) - A Contract Theory based Incentive Mechanism for Federated Learning [52.24418084256517]
フェデレートラーニング(FL)は、データプライバシ保護機械学習パラダイムとして機能し、分散クライアントによってトレーニングされた協調モデルを実現する。
FLタスクを達成するために、タスクパブリッシャはFLサーバに金銭的なインセンティブを支払う必要があり、FLサーバはFLクライアントにタスクをオフロードする。
タスクがクライアントによってプライベートにトレーニングされているという事実から、FLクライアントに対して適切なインセンティブを設計することは困難である。
論文 参考訳(メタデータ) (2021-08-12T07:30:42Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
フェデレートラーニング(FL)にブロックチェーンを統合する新しいフレームワークを提案する。
BLADE-FLは、プライバシー保護、改ざん抵抗、学習の効果的な協力の点で優れたパフォーマンスを持っている。
遅延クライアントは、他人のトレーニングされたモデルを盗聴し、不正行為を隠すために人工的なノイズを加える。
論文 参考訳(メタデータ) (2020-12-02T12:18:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。