論文の概要: Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems
- arxiv url: http://arxiv.org/abs/2411.02323v1
- Date: Mon, 04 Nov 2024 17:48:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:45:33.934079
- Title: Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems
- Title(参考訳): 多層コンピューティングシステムにおけるブロックチェーンを用いたデジタルツイン支援フェデレーション学習
- Authors: Yongyi Tang, Kunlun Wang, Dusit Niyato, Wen Chen, George K. Karagiannidis,
- Abstract要約: 産業用 4.0 システムでは、リソース制約のあるエッジデバイスが頻繁にデータ通信を行う。
本稿では,デジタルツイン (DT) とフェデレーション付きデジタルツイン (FL) 方式を提案する。
提案手法の有効性を数値解析により検証した。
- 参考スコア(独自算出の注目度): 67.14406100332671
- License:
- Abstract: In Industry 4.0 systems, a considerable number of resource-constrained Industrial Internet of Things (IIoT) devices engage in frequent data interactions due to the necessity for model training, which gives rise to concerns pertaining to security and privacy. In order to address these challenges, this paper considers a digital twin (DT) and blockchain-assisted federated learning (FL) scheme. To facilitate the FL process, we initially employ fog devices with abundant computational capabilities to generate DT for resource-constrained edge devices, thereby aiding them in local training. Subsequently, we formulate an FL delay minimization problem for FL, which considers both of model transmission time and synchronization time, also incorporates cooperative jamming to ensure secure synchronization of DT. To address this non-convex optimization problem, we propose a decomposition algorithm. In particular, we introduce upper limits on the local device training delay and the effects of aggregation jamming as auxiliary variables, thereby transforming the problem into a convex optimization problem that can be decomposed for independent solution. Finally, a blockchain verification mechanism is employed to guarantee the integrity of the model uploading throughout the FL process and the identities of the participants. The final global model is obtained from the verified local and global models within the blockchain through the application of deep learning techniques. The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis, which demonstrates that the integrated DT blockchain-assisted FL scheme significantly outperforms the benchmark schemes in terms of execution time, block optimization, and accuracy.
- Abstract(参考訳): 産業用 4.0 システムでは、多くの資源制約された産業用IoT(Industrial Internet of Things, IIoT)デバイスが、モデルトレーニングを必要とするため、頻繁なデータインタラクションに従事しており、セキュリティやプライバシに関する懸念が持ち上がっている。
これらの課題に対処するために、デジタルツイン(DT)とブロックチェーン支援フェデレーションラーニング(FL)方式を検討する。
FLプロセスを容易にするため,資源制約エッジ装置のDTを生成するために,まず大量の計算能力を有する霧装置を用いて局所的な訓練を行う。
その後、モデル伝送時間と同期時間の両方を考慮したFL遅延最小化問題を定式化し、協調ジャミングを組み込んでDTの安全な同期を確保する。
この非凸最適化問題に対処するために,分解アルゴリズムを提案する。
特に、局所的なデバイストレーニングの遅延とアグリゲーションジャミングが補助変数として与える影響に上限を導入し、独立解に対して分解可能な凸最適化問題に変換する。
最後に、FLプロセス全体と参加者のアイデンティティをアップロードするモデルの整合性を保証するために、ブロックチェーン検証メカニズムが使用される。
最後のグローバルモデルは、ディープラーニング技術の適用を通じて、ブロックチェーン内の検証済みのローカルモデルとグローバルモデルから取得される。
提案手法の有効性を数値解析により検証し,DTブロックチェーン支援FL方式は,実行時間,ブロック最適化,精度でベンチマーク方式を著しく上回ることを示した。
関連論文リスト
- Online Client Scheduling and Resource Allocation for Efficient Federated Edge Learning [9.451084740123198]
フェデレートラーニング(FL)は、エッジデバイスが生データを共有せずに、機械学習モデルを協調的にトレーニングすることを可能にする。
しかし、電力、帯域幅などの制約のあるリソースを持つモバイルエッジネットワーク上にFLをデプロイすることは、高いトレーニングレイテンシと低いモデルの精度に悩まされる。
本稿では,資源制約と不確実性の下で,モバイルエッジネットワーク上でのFLの最適なクライアントスケジューリングとリソース割り当てについて検討する。
論文 参考訳(メタデータ) (2024-09-29T01:56:45Z) - The Implications of Decentralization in Blockchained Federated Learning: Evaluating the Impact of Model Staleness and Inconsistencies [2.6391879803618115]
ブロックチェーンのような民主的な環境にフェデレートされた学習のオーケストレーションをアウトソーシングすることの実践的意義について検討する。
シミュレーションを用いて、よく知られたMNISTとCIFAR-10データセットに2つの異なるMLモデルを適用することにより、ブロックチェーンFL動作を評価する。
以上の結果から,モデルの不整合がモデルの精度に及ぼす影響(予測精度の最大35%低下)が示唆された。
論文 参考訳(メタデータ) (2023-10-11T13:18:23Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
フェデレーション学習(FL)は、データプライバシを保護しながら、エッジデバイス間での分散学習を可能にする。
これらの課題を克服するために、部分的なモデルプルーニングとパーソナライズを備えたFLフレームワークを検討する。
このフレームワークは、学習モデルを、データ表現を学ぶためにすべてのデバイスと共有されるモデルプルーニングと、特定のデバイスのために微調整されるパーソナライズされた部分とで、グローバルな部分に分割する。
論文 参考訳(メタデータ) (2023-09-04T21:10:45Z) - Gradient Sparsification for Efficient Wireless Federated Learning with
Differential Privacy [25.763777765222358]
フェデレートラーニング(FL)により、分散クライアントは、生データを互いに共有することなく、機械学習モデルを協調的にトレーニングできる。
モデルのサイズが大きくなるにつれて、送信帯域の制限によるトレーニングのレイテンシが低下し、個人情報が劣化すると同時に、差分プライバシ(DP)保護を使用する。
我々は、収束性能を犠牲にすることなく、トレーニング効率を向上させるために、FLフレームワーク無線チャネルのスペース化を提案する。
論文 参考訳(メタデータ) (2023-04-09T05:21:15Z) - Scheduling and Aggregation Design for Asynchronous Federated Learning
over Wireless Networks [56.91063444859008]
Federated Learning(FL)は、デバイス上でのトレーニングとサーバベースのアグリゲーションを組み合わせた、協調的な機械学習フレームワークである。
FLシステムにおけるストラグラー問題に対処するために,周期的アグリゲーションを用いた非同期FL設計を提案する。
年齢認識の集約重み付け設計は,非同期FL設定における学習性能を著しく向上させることができることを示す。
論文 参考訳(メタデータ) (2022-12-14T17:33:01Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
本研究は,デバイス上の分散フェデレーション学習(FL)システムにおいて,レイテンシとエネルギー消費の重み付け和を最小化する分散マルチリソース割り当て方式を提案する。
システム内の各モバイルデバイスは、指定された領域内でモデルトレーニングプロセスを実行し、それぞれパラメータの導出とアップロードを行うための計算と通信資源を割り当てる。
論文 参考訳(メタデータ) (2022-11-01T14:16:05Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
本稿では,モデル量子化による統合学習(FL)における無線通信と計算効率の向上について考察する。
提案したビット幅FL方式では,エッジデバイスは局所FLモデルパラメータの量子化バージョンを調整し,コーディネートサーバに送信し,それらを量子化されたグローバルモデルに集約し,デバイスを同期させる。
FLトレーニングプロセスはマルコフ決定プロセスとして記述でき、反復よりも行動選択を最適化するためのモデルベース強化学習(RL)手法を提案する。
論文 参考訳(メタデータ) (2022-09-21T08:52:51Z) - Latency Optimization for Blockchain-Empowered Federated Learning in
Multi-Server Edge Computing [24.505675843652448]
本稿では,マルチサーバエッジコンピューティングにおけるフェデレーション学習(BFL)のための新しいレイテンシ最適化問題について検討する。
このシステムモデルでは、分散モバイルデバイス(MD)がエッジサーバ(ES)と通信し、機械学習(ML)モデルのトレーニングとブロックマイニングの両方を同時に処理する。
論文 参考訳(メタデータ) (2022-03-18T00:38:29Z) - Towards On-Device Federated Learning: A Direct Acyclic Graph-based
Blockchain Approach [2.9202274421296943]
本稿では,DAG(Direct Acyclic Graph)ベースのブロックチェーンシステム(DAG-FL)を用いたフェデレートラーニングを支援するフレームワークを提案する。
2つのアルゴリズムDAG-FL ControllingとDAG-FL Updatingは、DAG-FLコンセンサスメカニズムの操作を精巧にするために異なるノードで動作するように設計されています。
論文 参考訳(メタデータ) (2021-04-27T10:29:38Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。