論文の概要: Incorporating Commonsense Knowledge into Story Ending Generation via
Heterogeneous Graph Networks
- arxiv url: http://arxiv.org/abs/2201.12538v1
- Date: Sat, 29 Jan 2022 09:33:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-01 14:36:28.719029
- Title: Incorporating Commonsense Knowledge into Story Ending Generation via
Heterogeneous Graph Networks
- Title(参考訳): 不均一グラフネットワークによるコモンセンス知識の物語終末生成
- Authors: Jiaan Wang, Beiqi Zou, Zhixu Li, Jianfeng Qu, Pengpeng Zhao, An Liu
and Lei Zhao
- Abstract要約: 本研究では,異なるレベルにおけるストーリーコンテキストの情報と,それら間の多義的な対話性の両方を明示的にモデル化するために,ストーリー異種グラフネットワーク(SHGN)を提案する。
より詳しくは、常識知識、単語、文を3種類のノードとみなす。
感情傾向を暗黙的に捉えるための2つの補助タスクを設計し、重要なイベントをコンテキストに配置する。
- 参考スコア(独自算出の注目度): 16.360265861788253
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Story ending generation is an interesting and challenging task, which aims to
generate a coherent and reasonable ending given a story context. The key
challenges of the task lie in how to comprehend the story context sufficiently
and handle the implicit knowledge behind story clues effectively, which are
still under-explored by previous work. In this paper, we propose a Story
Heterogeneous Graph Network (SHGN) to explicitly model both the information of
story context at different granularity levels and the multi-grained interactive
relations among them. In detail, we consider commonsense knowledge, words and
sentences as three types of nodes. To aggregate non-local information, a global
node is also introduced. Given this heterogeneous graph network, the node
representations are updated through graph propagation, which adequately
utilizes commonsense knowledge to facilitate story comprehension. Moreover, we
design two auxiliary tasks to implicitly capture the sentiment trend and key
events lie in the context. The auxiliary tasks are jointly optimized with the
primary story ending generation task in a multi-task learning strategy.
Extensive experiments on the ROCStories Corpus show that the developed model
achieves new state-of-the-art performances. Human study further demonstrates
that our model generates more reasonable story endings.
- Abstract(参考訳): ストーリーエンディング生成は、ストーリーコンテキストが与えられた一貫性と合理的なエンディングを生成することを目的として、興味深く挑戦的なタスクである。
このタスクの主な課題は、ストーリーのコンテキストを十分に理解し、ストーリーの手がかりの背後にある暗黙の知識を効果的に扱う方法にある。
本稿では,異なる粒度レベルでのストーリーコンテキストの情報と,それら間の多義的な相互関係を明示的にモデル化するストーリー異種グラフネットワーク(SHGN)を提案する。
具体的には,コモンセンス知識,単語,文を3種類のノードとして扱う。
非ローカル情報を集約するために、グローバルノードも導入される。
この異種グラフネットワークを考えると、ノード表現はグラフ伝搬を通じて更新され、コモンセンスの知識を十分に活用してストーリー理解を促進する。
さらに、感情傾向を暗黙的に捉えるための2つの補助的なタスクを設計し、重要なイベントをコンテキストに配置する。
補助タスクは、マルチタスク学習戦略において、ストーリーエンド生成タスクと共同で最適化される。
ROCStories Corpusの大規模な実験により、開発モデルが新しい最先端のパフォーマンスを実現することが示された。
人間の研究は、我々のモデルがより合理的な物語の結末を生成することを示す。
関連論文リスト
- Generating Visual Stories with Grounded and Coreferent Characters [63.07511918366848]
本稿では,一貫した接地的・中核的な特徴を持つ視覚的ストーリーを予測できる最初のモデルを提案する。
我々のモデルは、広く使われているVISTベンチマークの上に構築された新しいデータセットに基づいて微調整されています。
また、物語における文字の豊かさとコア参照を測定するための新しい評価指標を提案する。
論文 参考訳(メタデータ) (2024-09-20T14:56:33Z) - DataNarrative: Automated Data-Driven Storytelling with Visualizations and Texts [27.218934418961197]
データストーリ生成のための新しいタスクと,さまざまなソースから1,449のストーリを含むベンチマークを導入する。
2つのLLMエージェントを用いたマルチエージェントフレームワークを提案する。
我々のエージェント・フレームワークは一般的にモデルベースと人的評価の両方において非エージェント・フレームワークよりも優れていますが、結果はデータ・ストーリー・ジェネレーションにおけるユニークな課題を明らかにします。
論文 参考訳(メタデータ) (2024-08-09T21:31:33Z) - TARN-VIST: Topic Aware Reinforcement Network for Visual Storytelling [14.15543866199545]
クロスモーダルなタスクとして、視覚的なストーリーテリングは、順序付けられた画像シーケンスのためのストーリーを自動的に生成することを目的としている。
視覚的ストーリーテリングのための新しい手法,Topic Aware Reinforcement Network(TARN-VIST)を提案する。
特に,視覚的,言語的両面から,物語の話題情報を事前に抽出した。
論文 参考訳(メタデータ) (2024-03-18T08:01:23Z) - SCO-VIST: Social Interaction Commonsense Knowledge-based Visual
Storytelling [12.560014305032437]
本稿では、画像シーケンスをオブジェクトと関係を持つグラフとして表現するフレームワークであるSCO-VISTを紹介する。
SCO-VIST はこのグラフをプロットポイントを表し、意味的および発生に基づくエッジウェイトを持つプロットポイント間のブリッジを生成する。
この重み付きストーリーグラフは、Floyd-Warshallのアルゴリズムを用いて一連のイベントでストーリーラインを生成する。
論文 参考訳(メタデータ) (2024-02-01T04:09:17Z) - Intelligent Grimm -- Open-ended Visual Storytelling via Latent Diffusion
Models [70.86603627188519]
我々は,オープンエンドなビジュアルストーリーテリングとして表現された,与えられたストーリーラインに基づいてコヒーレントな画像列を生成するという,斬新で挑戦的な課題に焦点をあてる。
本稿では,新しい視覚言語コンテキストモジュールを用いた学習に基づく自動回帰画像生成モデル(StoryGen)を提案する。
StoryGenは最適化なしに文字を一般化することができ、一貫性のあるコンテンツと一貫した文字で画像列を生成する。
論文 参考訳(メタデータ) (2023-06-01T17:58:50Z) - Relational Multi-Task Learning: Modeling Relations between Data and
Tasks [84.41620970886483]
マルチタスク学習における主要な前提は、推論時にモデルが与えられたデータポイントにのみアクセスできるが、他のタスクからのデータポイントのラベルにはアクセスできないことである。
ここでは、補助的なタスクからデータポイントラベルを活用してより正確な予測を行う、新しいリレーショナルマルチタスク学習環境を提案する。
私たちはMetaLinkを開発し、そこではデータポイントとタスクを接続するナレッジグラフを構築します。
論文 参考訳(メタデータ) (2023-03-14T07:15:41Z) - Goal-Directed Story Generation: Augmenting Generative Language Models
with Reinforcement Learning [7.514717103747824]
本稿では,コンピュータ生成ストーリーのプロットを制御するために,深層強化学習と報酬形成を基礎とした2つの自動手法を提案する。
1つ目は、近似ポリシー最適化を利用して、既存のトランスフォーマーベースの言語モデルを微調整してテキスト継続を生成するが、目標探索も行う。
第2は、グラフを考慮したポリシーネットワークが使用する展開ストーリーから知識グラフを抽出し、言語モデルによって生成された候補継続を選択する。
論文 参考訳(メタデータ) (2021-12-16T03:34:14Z) - Consistency and Coherency Enhanced Story Generation [35.08911595854691]
生成したストーリーの一貫性と一貫性を高めるための2段階生成フレームワークを提案する。
第1段は物語の筋書きや出来事を描いた物語の輪郭を整理し、第2段は完全な物語へと輪郭を広げることである。
さらに、コア参照監視信号は、コア参照エラーを低減し、コア参照一貫性を向上させるために組み込まれている。
論文 参考訳(メタデータ) (2020-10-17T16:40:37Z) - Topic Adaptation and Prototype Encoding for Few-Shot Visual Storytelling [81.33107307509718]
トピック間一般化の能力をモデル化するためのトピック適応型ストーリーテラを提案する。
また,アトピー内導出能力のモデル化を目的とした符号化手法の試作も提案する。
実験結果から,トピック適応とプロトタイプ符号化構造が相互に利益をもたらすことが明らかとなった。
論文 参考訳(メタデータ) (2020-08-11T03:55:11Z) - PlotMachines: Outline-Conditioned Generation with Dynamic Plot State
Tracking [128.76063992147016]
PlotMachinesは、動的プロット状態を追跡することによってアウトラインをコヒーレントなストーリーに変換することを学習する、ニューラルな物語モデルである。
さらに,PlotMachinesを高レベルな談話構造で強化し,モデルが物語の異なる部分に対応する筆記スタイルを学習できるようにした。
論文 参考訳(メタデータ) (2020-04-30T17:16:31Z) - A Knowledge-Enhanced Pretraining Model for Commonsense Story Generation [98.25464306634758]
本稿では,外部知識ベースからのコモンセンス知識を利用して,合理的なストーリーを生成することを提案する。
我々は,真と偽のストーリーを識別するための差別的目的を組み合わせたマルチタスク学習を採用している。
我々のモデルは、特に論理学とグローバルコヒーレンスの観点から、最先端のベースラインよりも合理的なストーリーを生成することができる。
論文 参考訳(メタデータ) (2020-01-15T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。