論文の概要: Learning to Reason for Long-Form Story Generation
- arxiv url: http://arxiv.org/abs/2503.22828v1
- Date: Fri, 28 Mar 2025 18:48:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:37:00.698219
- Title: Learning to Reason for Long-Form Story Generation
- Title(参考訳): 長大なストーリー生成のための推論の学習
- Authors: Alexander Gurung, Mirella Lapata,
- Abstract要約: 一般的なストーリー生成タスク(Next-Chapter Prediction)と報酬定式化(Completion Likelihood Improvementによる検証リワード)を提案する。
私たちは、物語の凝縮した情報を推論し、次の章の詳細な計画を作成することを学びます。
私たちの推論は、ストーリージェネレータ作成を支援する章を通じて評価され、トレーニングされていない、教師なしの微調整(SFT)ベースラインと比較されます。
- 参考スコア(独自算出の注目度): 98.273323001781
- License:
- Abstract: Generating high-quality stories spanning thousands of tokens requires competency across a variety of skills, from tracking plot and character arcs to keeping a consistent and engaging style. Due to the difficulty of sourcing labeled datasets and precise quality measurements, most work using large language models (LLMs) for long-form story generation uses combinations of hand-designed prompting techniques to elicit author-like behavior. This is a manual process that is highly dependent on the specific story-generation task. Motivated by the recent success of applying RL with Verifiable Rewards to domains like math and coding, we propose a general story-generation task (Next-Chapter Prediction) and a reward formulation (Verified Rewards via Completion Likelihood Improvement) that allows us to use an unlabeled book dataset as a learning signal for reasoning. We learn to reason over a story's condensed information and generate a detailed plan for the next chapter. Our reasoning is evaluated via the chapters it helps a story-generator create, and compared against non-trained and supervised finetuning (SFT) baselines. Pairwise human judgments reveal the chapters our learned reasoning produces are preferred across almost all metrics, and the effect is more pronounced in Scifi and Fantasy genres.
- Abstract(参考訳): 何千ものトークンにまたがる高品質なストーリーを生成するには、プロットやキャラクターの弧を追跡することから、一貫性があり魅力的なスタイルを維持することまで、さまざまなスキルの能力が必要である。
ラベル付きデータセットのソーシングや正確な品質測定の難しさから、長文のストーリー生成に大規模言語モデル(LLM)を用いる作業の多くは、手書きのプロンプト技術を組み合わせて著者のような振る舞いを導き出す。
これは、特定のストーリー生成タスクに非常に依存する手作業です。
近年、数学やコーディングなどの領域に検証可能なリワードをRLで適用することに成功し、一般的なストーリー生成タスク(Next-Chapter Prediction)と報酬定式化(Verified Rewards via Completion Likelihood Improvement)を提案し、未ラベルの書籍データセットを推論のための学習信号として使用できるようにした。
私たちは、物語の凝縮した情報を推論し、次の章の詳細な計画を作成することを学びます。
私たちの推論は、ストーリージェネレータ作成を支援する章を通じて評価され、トレーニングされていない、教師なしの微調整(SFT)ベースラインと比較されます。
人間の判断は、学習した推論が生み出す章は、ほぼすべての指標で好まれており、その効果はScifiやFantasyのジャンルでより顕著であることを示している。
関連論文リスト
- StoryWeaver: A Unified World Model for Knowledge-Enhanced Story Character Customization [36.14275850149665]
本稿では,様々なストーリー関連知識を包括的に表現した新しい知識グラフ,すなわちキャラクタグラフ(textbfCG)を提案する。
次に、リッチテキストセマンティクスと一貫したストーリー視覚化が可能な、キャラクタグラフ(textbfC-CG)によるカスタマイズを実現するイメージジェネレータであるStoryWeaverを紹介する。
論文 参考訳(メタデータ) (2024-12-10T10:16:50Z) - Agents' Room: Narrative Generation through Multi-step Collaboration [54.98886593802834]
本稿では,物語の執筆を特殊エージェントが取り組んだサブタスクに分解する,物語理論に触発された世代フレームワークを提案する。
エージェントの部屋は,専門的評価者が好むストーリーをベースラインシステムより生成することを示す。
論文 参考訳(メタデータ) (2024-10-03T15:44:42Z) - Generating Visual Stories with Grounded and Coreferent Characters [63.07511918366848]
本稿では,一貫した接地的・中核的な特徴を持つ視覚的ストーリーを予測できる最初のモデルを提案する。
我々のモデルは、広く使われているVISTベンチマークの上に構築された新しいデータセットに基づいて微調整されています。
また、物語における文字の豊かさとコア参照を測定するための新しい評価指標を提案する。
論文 参考訳(メタデータ) (2024-09-20T14:56:33Z) - DataNarrative: Automated Data-Driven Storytelling with Visualizations and Texts [27.218934418961197]
データストーリ生成のための新しいタスクと,さまざまなソースから1,449のストーリを含むベンチマークを導入する。
2つのLLMエージェントを用いたマルチエージェントフレームワークを提案する。
我々のエージェント・フレームワークは一般的にモデルベースと人的評価の両方において非エージェント・フレームワークよりも優れていますが、結果はデータ・ストーリー・ジェネレーションにおけるユニークな課題を明らかにします。
論文 参考訳(メタデータ) (2024-08-09T21:31:33Z) - Guiding and Diversifying LLM-Based Story Generation via Answer Set Programming [1.7889842797216124]
大規模言語モデル(LLM)は、オープンエンドのユーザ要求に応じてストーリーを生成することができる。
本稿では,高レベルかつ抽象的な高レベルなストーリー構造仕様を用いて,ストーリー生成のガイドと多様化を提案する。
論文 参考訳(メタデータ) (2024-06-01T21:14:25Z) - Robust Preference Learning for Storytelling via Contrastive
Reinforcement Learning [53.92465205531759]
制御された自動ストーリ生成は、自然言語批判や嗜好から制約を満たす自然言語ストーリを生成することを目指している。
対照的なバイエンコーダモデルをトレーニングし、ストーリーを人間の批評と整合させ、汎用的な嗜好モデルを構築する。
我々はさらに、ストーリー生成の堅牢性を高めるために、プロンプトラーニング技術を用いて、対照的な報酬モデルを微調整する。
論文 参考訳(メタデータ) (2022-10-14T13:21:33Z) - Unsupervised Neural Stylistic Text Generation using Transfer learning
and Adapters [66.17039929803933]
応答生成のためのスタイル特化属性を学習するために,モデルパラメータの0.3%しか更新しない新しい転送学習フレームワークを提案する。
我々はPERSONALITY-CAPTIONSデータセットからスタイル固有の属性を学習する。
論文 参考訳(メタデータ) (2022-10-07T00:09:22Z) - Incorporating Commonsense Knowledge into Story Ending Generation via
Heterogeneous Graph Networks [16.360265861788253]
本研究では,異なるレベルにおけるストーリーコンテキストの情報と,それら間の多義的な対話性の両方を明示的にモデル化するために,ストーリー異種グラフネットワーク(SHGN)を提案する。
より詳しくは、常識知識、単語、文を3種類のノードとみなす。
感情傾向を暗黙的に捉えるための2つの補助タスクを設計し、重要なイベントをコンテキストに配置する。
論文 参考訳(メタデータ) (2022-01-29T09:33:11Z) - Topic Adaptation and Prototype Encoding for Few-Shot Visual Storytelling [81.33107307509718]
トピック間一般化の能力をモデル化するためのトピック適応型ストーリーテラを提案する。
また,アトピー内導出能力のモデル化を目的とした符号化手法の試作も提案する。
実験結果から,トピック適応とプロトタイプ符号化構造が相互に利益をもたらすことが明らかとなった。
論文 参考訳(メタデータ) (2020-08-11T03:55:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。