Coherent Many-Body Oscillations Induced by a Superposition of Broken
Symmetry States in the Wake of a Quantum Phase Transition
- URL: http://arxiv.org/abs/2201.12540v2
- Date: Wed, 14 Dec 2022 19:49:31 GMT
- Title: Coherent Many-Body Oscillations Induced by a Superposition of Broken
Symmetry States in the Wake of a Quantum Phase Transition
- Authors: Jacek Dziarmaga, Marek M. Rams, and Wojciech H. Zurek
- Abstract summary: quenches through the critical region of quantum phase transitions result in post-transition states populated with topological defects.
We identify coherent quantum oscillations induced by such superpositions in observables complementary to the one involved in symmetry breaking.
In addition to the obvious fundamental significance of a superposition of different broken symmetry states, quantum coherent oscillations can be used to verify unitarity and test for imperfections of the experimental implementations of quantum simulators.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is now widely accepted that quenches through the critical region of
quantum phase transitions result in post-transition states populated with
topological defects -- analogs of the classical topological defects. However,
consequences of the very non-classical fact that the state after a quench is a
{\it superposition} of distinct, broken-symmetry vacua with different numbers
and locations of defects have remained largely unexplored. We identify coherent
quantum oscillations induced by such superpositions in observables
complementary to the one involved in symmetry breaking. These oscillations
satisfy Kibble-Zurek dynamical scaling laws with the quench rate, with an
instantaneous oscillation frequency set primarily by the gap of the system. In
addition to the obvious fundamental significance of a superposition of
different broken symmetry states, quantum coherent oscillations can be used to
verify unitarity and test for imperfections of the experimental implementations
of quantum simulators.
Related papers
- Observation of quantum superposition of topological defects in a trapped ion quantum simulator [10.307677845109378]
We report the observation of quantum superposition of topological defects in a trapped-ion quantum simulator.
Our work provides useful tools for non-equilibrium dynamics in quantum Kibble-Zurek physics.
arXiv Detail & Related papers (2024-10-20T13:27:13Z) - Attractive-repulsive interaction in coupled quantum oscillators [14.37149160708975]
We find an interesting symmetry-breaking transition from quantum limit cycle oscillation to quantum inhomogeneous steady state.
This transition is contrary to the previously known symmetry-breaking transition from quantum homogeneous to inhomogeneous steady state.
Remarkably, we find the generation of entanglement associated with the symmetry-breaking transition that has no analogue in the classical domain.
arXiv Detail & Related papers (2024-08-23T10:45:19Z) - Non-chiral non-Bloch invariants and topological phase diagram in non-unitary quantum dynamics without chiral symmetry [26.179241616332387]
We identify the non-Bloch topological phase diagram of a one-dimensional (1D) non-Hermitian system without chiral symmetry.
We find that such topological invariants can distinguish topologically distinct gapped phases.
Our work provides a useful platform to study the interplay among topology, symmetries and the non-Hermiticity.
arXiv Detail & Related papers (2024-07-26T03:29:30Z) - Crossing exceptional points in non-Hermitian quantum systems [41.94295877935867]
We reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.
We demonstrate a switching in the quantum interference of photons directly at the exceptional point.
arXiv Detail & Related papers (2024-07-17T14:04:00Z) - Kibble-Zurek mechanism and errors of gapped quantum phases [0.25602836891933073]
Kibble-Zurek mechanism relates the domain of non-equilibrium dynamics with the critical properties at equilibrium.
We present a novel numerical scheme to estimate the scaling exponent wherein the notion of defects is mapped to errors.
arXiv Detail & Related papers (2024-01-24T17:57:27Z) - Dynamics of quantum discommensurations in the Frenkel-Kontorova chain [30.733286944793527]
We study how imperfections present in concrete implementations of the Frenkel-Kontorova model affect the properties of topological defects.
We analyze the propagation and scattering of solitons, examining the role of quantum fluctuations and imperfections in influencing these processes.
arXiv Detail & Related papers (2024-01-23T10:12:45Z) - Universal defects statistics with strong long-range interactions [5.8010446129208155]
The mechanism of defect generation in long-range systems is a purely quantum process with no classical equivalent.
Our findings can be tested on various experimental platforms, including Rydberg gases and trapped ions.
arXiv Detail & Related papers (2023-05-19T15:55:35Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Experimentally verifying anti-Kibble-Zurek behavior in a quantum system
under noisy control field [38.305954220018315]
Kibble-Zurek mechanism (KZM) is a universal framework which could in principle describe phase transition phenomenon.
A conflicting observation termed anti-KZ behavior has been reported in the study of ferroelectric phase transition.
Our research sets a stage for quantum simulation of such anti-KZ behavior in two-level systems.
arXiv Detail & Related papers (2020-08-03T14:03:21Z) - Measurement-induced quantum criticality under continuous monitoring [0.0]
We investigate entanglement phase transitions from volume-law to area-law entanglement in a quantum many-body state under continuous position measurement.
We find the signatures of the transitions as peak structures in the mutual information as a function of measurement strength.
We propose a possible experimental setup to test the predicted entanglement transition based on the subsystem particle-number fluctuations.
arXiv Detail & Related papers (2020-04-24T19:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.