Communication-Efficient Consensus Mechanism for Federated Reinforcement
Learning
- URL: http://arxiv.org/abs/2201.12718v1
- Date: Sun, 30 Jan 2022 04:04:24 GMT
- Title: Communication-Efficient Consensus Mechanism for Federated Reinforcement
Learning
- Authors: Xing Xu and Rongpeng Li and Zhifeng Zhao and Honggang Zhang
- Abstract summary: We show that FL can improve the policy performance of IRL in terms of training efficiency and stability.
To reach a good balance between improving the model's convergence performance and reducing the required communication and computation overheads, this paper proposes a system utility function.
- Score: 20.891460617583302
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The paper considers independent reinforcement learning (IRL) for multi-agent
decision-making process in the paradigm of federated learning (FL). We show
that FL can clearly improve the policy performance of IRL in terms of training
efficiency and stability. However, since the policy parameters are trained
locally and aggregated iteratively through a central server in FL, frequent
information exchange incurs a large amount of communication overheads. To reach
a good balance between improving the model's convergence performance and
reducing the required communication and computation overheads, this paper
proposes a system utility function and develops a consensus-based optimization
scheme on top of the periodic averaging method, which introduces the consensus
algorithm into FL for the exchange of a model's local gradients. This paper
also provides novel convergence guarantees for the developed method, and
demonstrates its superior effectiveness and efficiency in improving the system
utility value through theoretical analyses and numerical simulation results.
Related papers
- Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - Learner Referral for Cost-Effective Federated Learning Over Hierarchical
IoT Networks [21.76836812021954]
This paper aided federated selection (LRef-FedCS), communications resource, and local model accuracy (LMAO) methods.
Our proposed LRef-FedCS approach could achieve a good balance between high global accuracy and reducing cost.
arXiv Detail & Related papers (2023-07-19T13:33:43Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
We propose a novel cloud radio access network (Cloud-RAN) based vertical FL system to enable fast and accurate model aggregation.
We characterize the convergence behavior of the vertical FL algorithm considering both uplink and downlink transmissions.
We establish a system optimization framework by joint transceiver and fronthaul quantization design, for which successive convex approximation and alternate convex search based system optimization algorithms are developed.
arXiv Detail & Related papers (2023-05-04T09:26:03Z) - FedAgg: Adaptive Federated Learning with Aggregated Gradients [1.5653612447564105]
We propose an adaptive FEDerated learning algorithm called FedAgg to alleviate the divergence between the local and average model parameters and obtain a fast model convergence rate.
We show that our framework is superior to existing state-of-the-art FL strategies for enhancing model performance and accelerating convergence rate under IID and Non-IID datasets.
arXiv Detail & Related papers (2023-03-28T08:07:28Z) - Asynchronous Online Federated Learning with Reduced Communication
Requirements [6.282767337715445]
We propose a communication-efficient asynchronous online federated learning (PAO-Fed) strategy.
By reducing the communication overhead of the participants, the proposed method renders participation in the learning task more accessible and efficient.
We conduct comprehensive simulations to study the performance of the proposed method on both synthetic and real-life datasets.
arXiv Detail & Related papers (2023-03-27T14:06:05Z) - Reliable Federated Disentangling Network for Non-IID Domain Feature [62.73267904147804]
In this paper, we propose a novel reliable federated disentangling network, termed RFedDis.
To the best of our knowledge, our proposed RFedDis is the first work to develop an FL approach based on evidential uncertainty combined with feature disentangling.
Our proposed RFedDis provides outstanding performance with a high degree of reliability as compared to other state-of-the-art FL approaches.
arXiv Detail & Related papers (2023-01-30T11:46:34Z) - Scheduling and Aggregation Design for Asynchronous Federated Learning
over Wireless Networks [56.91063444859008]
Federated Learning (FL) is a collaborative machine learning framework that combines on-device training and server-based aggregation.
We propose an asynchronous FL design with periodic aggregation to tackle the straggler issue in FL systems.
We show that an age-aware'' aggregation weighting design can significantly improve the learning performance in an asynchronous FL setting.
arXiv Detail & Related papers (2022-12-14T17:33:01Z) - Accelerated Federated Learning with Decoupled Adaptive Optimization [53.230515878096426]
federated learning (FL) framework enables clients to collaboratively learn a shared model while keeping privacy of training data on clients.
Recently, many iterations efforts have been made to generalize centralized adaptive optimization methods, such as SGDM, Adam, AdaGrad, etc., to federated settings.
This work aims to develop novel adaptive optimization methods for FL from the perspective of dynamics of ordinary differential equations (ODEs)
arXiv Detail & Related papers (2022-07-14T22:46:43Z) - Communication-Efficient Hierarchical Federated Learning for IoT
Heterogeneous Systems with Imbalanced Data [42.26599494940002]
Federated learning (FL) is a distributed learning methodology that allows multiple nodes to cooperatively train a deep learning model.
This paper studies the potential of hierarchical FL in IoT heterogeneous systems.
It proposes an optimized solution for user assignment and resource allocation on multiple edge nodes.
arXiv Detail & Related papers (2021-07-14T08:32:39Z) - The Gradient Convergence Bound of Federated Multi-Agent Reinforcement
Learning with Efficient Communication [20.891460617583302]
The paper considers independent reinforcement learning (IRL) for collaborative decision-making in the paradigm of federated learning (FL)
FL generates excessive communication overheads between agents and a remote central server.
This paper proposes two advanced optimization schemes to improve the system's utility value.
arXiv Detail & Related papers (2021-03-24T07:21:43Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.