Scheduling and Aggregation Design for Asynchronous Federated Learning
over Wireless Networks
- URL: http://arxiv.org/abs/2212.07356v2
- Date: Tue, 21 Mar 2023 09:26:58 GMT
- Title: Scheduling and Aggregation Design for Asynchronous Federated Learning
over Wireless Networks
- Authors: Chung-Hsuan Hu, Zheng Chen, and Erik G. Larsson
- Abstract summary: Federated Learning (FL) is a collaborative machine learning framework that combines on-device training and server-based aggregation.
We propose an asynchronous FL design with periodic aggregation to tackle the straggler issue in FL systems.
We show that an age-aware'' aggregation weighting design can significantly improve the learning performance in an asynchronous FL setting.
- Score: 56.91063444859008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a collaborative machine learning (ML) framework
that combines on-device training and server-based aggregation to train a common
ML model among distributed agents. In this work, we propose an asynchronous FL
design with periodic aggregation to tackle the straggler issue in FL systems.
Considering limited wireless communication resources, we investigate the effect
of different scheduling policies and aggregation designs on the convergence
performance. Driven by the importance of reducing the bias and variance of the
aggregated model updates, we propose a scheduling policy that jointly considers
the channel quality and training data representation of user devices. The
effectiveness of our channel-aware data-importance-based scheduling policy,
compared with state-of-the-art methods proposed for synchronous FL, is
validated through simulations. Moreover, we show that an ``age-aware''
aggregation weighting design can significantly improve the learning performance
in an asynchronous FL setting.
Related papers
- Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Asynchronous Multi-Model Dynamic Federated Learning over Wireless
Networks: Theory, Modeling, and Optimization [20.741776617129208]
Federated learning (FL) has emerged as a key technique for distributed machine learning (ML)
We first formulate rectangular scheduling steps and functions to capture the impact of system parameters on learning performance.
Our analysis sheds light on the joint impact of device training variables and asynchronous scheduling decisions.
arXiv Detail & Related papers (2023-05-22T21:39:38Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
We propose a novel cloud radio access network (Cloud-RAN) based vertical FL system to enable fast and accurate model aggregation.
We characterize the convergence behavior of the vertical FL algorithm considering both uplink and downlink transmissions.
We establish a system optimization framework by joint transceiver and fronthaul quantization design, for which successive convex approximation and alternate convex search based system optimization algorithms are developed.
arXiv Detail & Related papers (2023-05-04T09:26:03Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
This paper considers improving wireless communication and computation efficiency in federated learning (FL) via model quantization.
In the proposed bitwidth FL scheme, edge devices train and transmit quantized versions of their local FL model parameters to a coordinating server, which aggregates them into a quantized global model and synchronizes the devices.
We show that the FL training process can be described as a Markov decision process and propose a model-based reinforcement learning (RL) method to optimize action selection over iterations.
arXiv Detail & Related papers (2022-09-21T08:52:51Z) - Resource-Efficient and Delay-Aware Federated Learning Design under Edge
Heterogeneity [10.702853653891902]
Federated learning (FL) has emerged as a popular methodology for distributing machine learning across wireless edge devices.
In this work, we consider optimizing the tradeoff between model performance and resource utilization in FL.
Our proposed StoFedDelAv incorporates a localglobal model combiner into the FL computation step.
arXiv Detail & Related papers (2021-12-27T22:30:15Z) - User Scheduling for Federated Learning Through Over-the-Air Computation [22.853678584121862]
A new machine learning technique termed as federated learning (FL) aims to preserve data at the edge devices and to only exchange ML model parameters in the learning process.
FL not only reduces the communication needs but also helps to protect the local privacy.
AirComp is capable of computing while transmitting data by allowing multiple devices to send data simultaneously by using analog modulation.
arXiv Detail & Related papers (2021-08-05T23:58:15Z) - Device Scheduling and Update Aggregation Policies for Asynchronous
Federated Learning [72.78668894576515]
Federated Learning (FL) is a newly emerged decentralized machine learning (ML) framework.
We propose an asynchronous FL framework with periodic aggregation to eliminate the straggler issue in FL systems.
arXiv Detail & Related papers (2021-07-23T18:57:08Z) - Convergence Analysis and System Design for Federated Learning over
Wireless Networks [16.978276697446724]
Federated learning (FL) has emerged as an important and promising learning scheme in IoT.
FL training requires frequent model exchange, which is largely affected by the wireless communication network.
In this paper, we analyze the convergence rate of FL training considering the joint impact of communication network and training settings.
arXiv Detail & Related papers (2021-04-30T02:33:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.