Approximate Bayesian Computation Based on Maxima Weighted Isolation
Kernel Mapping
- URL: http://arxiv.org/abs/2201.12745v1
- Date: Sun, 30 Jan 2022 07:11:57 GMT
- Title: Approximate Bayesian Computation Based on Maxima Weighted Isolation
Kernel Mapping
- Authors: Iurii S. Nagornov
- Abstract summary: The work tries to solve the problem of a precise evaluation of a parameter for this type of model.
The application of the branching processes model to cancer cell evolution has many difficulties like high dimensionality and the rare appearance of a result of interest.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivation: The branching processes model yields unevenly stochastically
distributed data that consists of sparse and dense regions. The work tries to
solve the problem of a precise evaluation of a parameter for this type of
model. The application of the branching processes model to cancer cell
evolution has many difficulties like high dimensionality and the rare
appearance of a result of interest. Moreover, we would like to solve the
ambitious task of obtaining the coefficients of the model reflecting the
relationship of driver genes mutations and cancer hallmarks on the basis of
personal data of variant allele frequencies. Results: The Approximate Bayesian
computation method based on the Isolation kernel is designed. The method
includes a transformation row data to a Hilbert space (mapping) and measures
the similarity between simulation points and maxima weighted Isolation kernel
mapping related to the observation point. Also, we designed a heuristic
algorithm to find parameter estimation without gradient calculation and
dimension-independent. The advantage of the proposed machine learning method is
shown for multidimensional test data as well as for an example of cancer cell
evolution.
Related papers
- Conditionally-Conjugate Gaussian Process Factor Analysis for Spike Count Data via Data Augmentation [8.114880112033644]
Recently, GPFA has been extended to model spike count data.
We propose a conditionally-conjugate Gaussian process factor analysis (ccGPFA) resulting in both analytically and computationally tractable inference.
arXiv Detail & Related papers (2024-05-19T21:53:36Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
We present a novel extension of multi-task Gaussian Cox processes for modeling heterogeneous correlated tasks jointly.
A MOGP prior over the parameters of the dedicated likelihoods for classification, regression and point process tasks can facilitate sharing of information between heterogeneous tasks.
We derive a mean-field approximation to realize closed-form iterative updates for estimating model parameters.
arXiv Detail & Related papers (2023-08-29T15:01:01Z) - Positive definite nonparametric regression using an evolutionary
algorithm with application to covariance function estimation [0.0]
We propose a novel nonparametric regression framework for estimating covariance functions of stationary processes.
Our method can impose positive definiteness, as well as isotropy and monotonicity, on the estimators.
Our method provides more reliable estimates for long-range dependence.
arXiv Detail & Related papers (2023-04-25T22:01:14Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Numerically Stable Sparse Gaussian Processes via Minimum Separation
using Cover Trees [57.67528738886731]
We study the numerical stability of scalable sparse approximations based on inducing points.
For low-dimensional tasks such as geospatial modeling, we propose an automated method for computing inducing points satisfying these conditions.
arXiv Detail & Related papers (2022-10-14T15:20:17Z) - Orthogonalization of data via Gromov-Wasserstein type feedback for
clustering and visualization [5.44192123671277]
We propose an adaptive approach for clustering and visualization of data by an orthogonalization process.
We prove that the method converges globally to a unique fixpoint for certain parameter values.
We confirm that the method produces biologically meaningful clustering results consistent with human expert classification.
arXiv Detail & Related papers (2022-07-25T15:52:11Z) - Posterior and Computational Uncertainty in Gaussian Processes [52.26904059556759]
Gaussian processes scale prohibitively with the size of the dataset.
Many approximation methods have been developed, which inevitably introduce approximation error.
This additional source of uncertainty, due to limited computation, is entirely ignored when using the approximate posterior.
We develop a new class of methods that provides consistent estimation of the combined uncertainty arising from both the finite number of data observed and the finite amount of computation expended.
arXiv Detail & Related papers (2022-05-30T22:16:25Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - A similarity-based Bayesian mixture-of-experts model [0.5156484100374058]
We present a new non-parametric mixture-of-experts model for multivariate regression problems.
Using a conditionally specified model, predictions for out-of-sample inputs are based on similarities to each observed data point.
Posterior inference is performed on the parameters of the mixture as well as the distance metric.
arXiv Detail & Related papers (2020-12-03T18:08:30Z) - An Embedded Model Estimator for Non-Stationary Random Functions using
Multiple Secondary Variables [0.0]
This paper introduces the method and shows that it has consistency results that are similar in nature to those applying to geostatistical modelling and to Quantile Random Forests.
The algorithm works by estimating a conditional distribution for the target variable at each target location.
arXiv Detail & Related papers (2020-11-09T00:14:24Z) - Fast approximations in the homogeneous Ising model for use in scene
analysis [61.0951285821105]
We provide accurate approximations that make it possible to numerically calculate quantities needed in inference.
We show that our approximation formulae are scalable and unfazed by the size of the Markov Random Field.
The practical import of our approximation formulae is illustrated in performing Bayesian inference in a functional Magnetic Resonance Imaging activation detection experiment, and also in likelihood ratio testing for anisotropy in the spatial patterns of yearly increases in pistachio tree yields.
arXiv Detail & Related papers (2017-12-06T14:24:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.