論文の概要: Contrastive Learning from Demonstrations
- arxiv url: http://arxiv.org/abs/2201.12813v1
- Date: Sun, 30 Jan 2022 13:36:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-01 14:35:20.355625
- Title: Contrastive Learning from Demonstrations
- Title(参考訳): 実演からの対比学習
- Authors: Andr\'e Correia and Lu\'is A. Alexandre
- Abstract要約: これらの表現は、ピック・アンド・プレイスを含むいくつかのロボット作業の模倣に適用可能であることを示す。
我々は、タスク関連情報を強化するためにコントラスト学習を適用することで、最近提案された自己教師付き学習アルゴリズムを最適化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents a framework for learning visual representations from
unlabeled video demonstrations captured from multiple viewpoints. We show that
these representations are applicable for imitating several robotic tasks,
including pick and place. We optimize a recently proposed self-supervised
learning algorithm by applying contrastive learning to enhance task-relevant
information while suppressing irrelevant information in the feature embeddings.
We validate the proposed method on the publicly available Multi-View Pouring
and a custom Pick and Place data sets and compare it with the TCN triplet
baseline. We evaluate the learned representations using three metrics:
viewpoint alignment, stage classification and reinforcement learning, and in
all cases the results improve when compared to state-of-the-art approaches,
with the added benefit of reduced number of training iterations.
- Abstract(参考訳): 本稿では,複数視点から撮影した未ラベル映像から視覚表現を学習するためのフレームワークを提案する。
これらの表現は、ピックやプレイスなど、いくつかのロボットタスクの模倣に適用できることを示す。
我々は最近提案した自己教師付き学習アルゴリズムを、コントラスト学習を適用して、特徴埋め込みにおける無関係情報を抑えながらタスク関連情報を強化することで最適化する。
提案手法を利用可能なマルチビューポーリングとカスタムピック・アンド・プレイス・データセット上で検証し,TCN三重項ベースラインと比較する。
我々は,視点アライメント,ステージ分類,強化学習という3つの指標を用いて学習表現を評価し,すべての場合において,最先端のアプローチと比較して結果が向上する。
関連論文リスト
- Multimodal Information Bottleneck for Deep Reinforcement Learning with Multiple Sensors [10.454194186065195]
強化学習はロボット制御タスクにおいて有望な成果を上げてきたが、情報の有効活用に苦慮している。
最近の研究は、複数の感覚入力から関節表現を抽出するために、再構成や相互情報に基づく補助的損失を構築している。
生のマルチモーダル観測について,学習した共同表現で情報を圧縮することが有用である。
論文 参考訳(メタデータ) (2024-10-23T04:32:37Z) - Cross-view Graph Contrastive Representation Learning on Partially
Aligned Multi-view Data [52.491074276133325]
マルチビュー表現学習は、過去数十年間で急速に発展し、多くの分野に応用されてきた。
本稿では,多視点情報を統合してデータアライメントを行い,潜在表現を学習する,新しいクロスビューグラフコントラスト学習フレームワークを提案する。
複数の実データを用いて実験を行い,クラスタリングおよび分類作業における提案手法の有効性を示した。
論文 参考訳(メタデータ) (2022-11-08T09:19:32Z) - CPL: Counterfactual Prompt Learning for Vision and Language Models [76.18024920393245]
本稿では、視覚と言語モデルのための新しいアンダーラインテキストbfCounterfactual underlinetextbfPrompt underlinetextbfLearning (CPL)法を提案する。
CPLは、共同最適化フレームワークにおいて、反ファクト生成とコントラスト学習を同時に採用している。
実験により、CPLは異なるビジョンと言語タスクにおいて優れた数ショットのパフォーマンスを得ることができることが示された。
論文 参考訳(メタデータ) (2022-10-19T08:06:39Z) - An Empirical Investigation of Representation Learning for Imitation [76.48784376425911]
視覚、強化学習、NLPにおける最近の研究は、補助的な表現学習の目的が、高価なタスク固有の大量のデータの必要性を減らすことを示している。
本稿では,表現学習アルゴリズムを構築するためのモジュラーフレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-16T11:23:42Z) - Co$^2$L: Contrastive Continual Learning [69.46643497220586]
近年の自己教師型学習のブレークスルーは、このようなアルゴリズムが視覚的な表現を学習し、見えないタスクにもっとうまく移行できることを示している。
本稿では、連続的な学習と伝達可能な表現の維持に焦点を当てたリハーサルに基づく連続学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-28T06:14:38Z) - Self-supervised Co-training for Video Representation Learning [103.69904379356413]
実例に基づく情報ノイズコントラスト推定訓練に意味クラス正の付加を施すことの利点について検討する。
本稿では,インフォネッションNCEの損失を改善するための,自己指導型協調学習手法を提案する。
本研究では,2つの下流タスク(行動認識とビデオ検索)における学習表現の質を評価する。
論文 参考訳(メタデータ) (2020-10-19T17:59:01Z) - Memory-augmented Dense Predictive Coding for Video Representation
Learning [103.69904379356413]
本稿では,新しいアーキテクチャと学習フレームワーク Memory-augmented Predictive Coding (MemDPC) を提案する。
本稿では、RGBフレームからの視覚のみの自己教師付きビデオ表現学習や、教師なし光学フローからの学習、あるいはその両方について検討する。
いずれの場合も、トレーニングデータの桁数が桁違いに少ない他のアプローチに対して、最先端または同等のパフォーマンスを示す。
論文 参考訳(メタデータ) (2020-08-03T17:57:01Z) - On Mutual Information in Contrastive Learning for Visual Representations [19.136685699971864]
視覚における「対照的」学習アルゴリズムは、伝達タスクにおいて非常によく機能する表現を学ぶために示されている。
このアルゴリズムの族は、画像の2つ以上の「ビュー」間の相互情報の低境界を最大化する。
負のサンプルとビューの選択は、これらのアルゴリズムの成功に不可欠である。
論文 参考訳(メタデータ) (2020-05-27T04:21:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。