論文の概要: Multimodal Information Bottleneck for Deep Reinforcement Learning with Multiple Sensors
- arxiv url: http://arxiv.org/abs/2410.17551v1
- Date: Wed, 23 Oct 2024 04:32:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:54:42.975340
- Title: Multimodal Information Bottleneck for Deep Reinforcement Learning with Multiple Sensors
- Title(参考訳): 複数のセンサを用いた深層強化学習のためのマルチモーダル情報基盤
- Authors: Bang You, Huaping Liu,
- Abstract要約: 強化学習はロボット制御タスクにおいて有望な成果を上げてきたが、情報の有効活用に苦慮している。
最近の研究は、複数の感覚入力から関節表現を抽出するために、再構成や相互情報に基づく補助的損失を構築している。
生のマルチモーダル観測について,学習した共同表現で情報を圧縮することが有用である。
- 参考スコア(独自算出の注目度): 10.454194186065195
- License:
- Abstract: Reinforcement learning has achieved promising results on robotic control tasks but struggles to leverage information effectively from multiple sensory modalities that differ in many characteristics. Recent works construct auxiliary losses based on reconstruction or mutual information to extract joint representations from multiple sensory inputs to improve the sample efficiency and performance of reinforcement learning algorithms. However, the representations learned by these methods could capture information irrelevant to learning a policy and may degrade the performance. We argue that compressing information in the learned joint representations about raw multimodal observations is helpful, and propose a multimodal information bottleneck model to learn task-relevant joint representations from egocentric images and proprioception. Our model compresses and retains the predictive information in multimodal observations for learning a compressed joint representation, which fuses complementary information from visual and proprioceptive feedback and meanwhile filters out task-irrelevant information in raw multimodal observations. We propose to minimize the upper bound of our multimodal information bottleneck objective for computationally tractable optimization. Experimental evaluations on several challenging locomotion tasks with egocentric images and proprioception show that our method achieves better sample efficiency and zero-shot robustness to unseen white noise than leading baselines. We also empirically demonstrate that leveraging information from egocentric images and proprioception is more helpful for learning policies on locomotion tasks than solely using one single modality.
- Abstract(参考訳): 強化学習はロボット制御タスクにおいて有望な成果を上げてきたが、多くの特性が異なる複数の感覚モーダルからの情報を効果的に活用することは困難である。
近年の研究では,複数のセンサ入力から共同表現を抽出し,強化学習アルゴリズムのサンプル効率と性能を向上させるために,再構成や相互情報に基づく補助的損失を構築している。
しかし、これらの手法によって学習された表現は、政策の学習に関係のない情報を捉え、性能を低下させる可能性がある。
我々は、生のマルチモーダル観測に関する学習された関節表現における情報を圧縮することが有用であると主張し、エゴセントリックなイメージとプロプリセプションからタスク関連関節表現を学習するためのマルチモーダル情報ボトルネックモデルを提案する。
本モデルでは,圧縮された関節表現を学習するためのマルチモーダル観察における予測情報を圧縮・保持し,視覚的およびプロプライエタリなフィードバックから相補的な情報を抽出し,一方,生のマルチモーダル観察においてタスク非関連情報をフィルタリングする。
本稿では,計算可能最適化のためのマルチモーダル情報ボトルネック目標の上限を最小化することを提案する。
エゴセントリック画像とプロプレセプションを用いた難解な移動課題に対する実験的評価により,本手法は,先行するベースラインよりも目立たない白色雑音に対して,より優れたサンプリング効率とゼロショットロバスト性が得られることが示された。
また,エゴセントリックなイメージやプロプレセプションからの情報を活用することは,単一のモダリティのみを用いることよりも,移動課題の学習に有用であることを示す。
関連論文リスト
- Less is More: High-value Data Selection for Visual Instruction Tuning [127.38740043393527]
本稿では,視覚的命令データの冗長性を排除し,トレーニングコストを削減するために,高価値なデータ選択手法TIVEを提案する。
約15%のデータしか使用していない我々のアプローチは、8つのベンチマークで全データ微調整モデルに匹敵する平均性能を実現することができる。
論文 参考訳(メタデータ) (2024-03-14T16:47:25Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
マスク画像モデル(MIM)は,マスク画像から元の情報を復元する簡便さと有効性から広く利用されている。
本稿では、強化学習(RL)を利用して最適な画像マスキング比とマスキング戦略を自動検索する決定に基づくMIMを提案する。
本手法は,ニューロン分節の課題において,代替自己監督法に対して有意な優位性を有する。
論文 参考訳(メタデータ) (2023-10-06T10:40:46Z) - SeMAIL: Eliminating Distractors in Visual Imitation via Separated Models [22.472167814814448]
本稿では,SeMAIL(Separated Model-based Adversarial Imitation Learning)というモデルベース模倣学習アルゴリズムを提案する。
本手法は, 様々な視覚的制御タスクにおいて, 複雑な観察と, 専門的な観察から異なる背景を持つより困難なタスクにおいて, ほぼ専門的な性能を実現する。
論文 参考訳(メタデータ) (2023-06-19T04:33:44Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Accelerating exploration and representation learning with offline
pre-training [52.6912479800592]
1つのオフラインデータセットから2つの異なるモデルを別々に学習することで、探索と表現の学習を改善することができることを示す。
ノイズコントラスト推定と補助報酬モデルを用いて状態表現を学習することで、挑戦的なNetHackベンチマークのサンプル効率を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2023-03-31T18:03:30Z) - Multi-view Information Bottleneck Without Variational Approximation [34.877573432746246]
情報ボトルネックの原理を教師付き多視点学習シナリオに拡張する。
我々は、最近提案された行列ベースのR'enyiの$alpha$-order entropy関数を用いて、結果の目的を最適化する。
合成と実世界の両方のデータセットにおける実験結果から,各ビューにおけるノイズや冗長な情報に対するロバスト性の向上が期待できる。
論文 参考訳(メタデータ) (2022-04-22T06:48:04Z) - Rethinking Minimal Sufficient Representation in Contrastive Learning [28.83450836832452]
対照的な学習モデルでは、ビュー間の共有情報に過度に適合するリスクがあることが示される。
本稿では,タスク関連情報を概ね導入するために,正規化として表現と入力の相互情報を増やすことを提案する。
下流タスクにおける古典的コントラスト学習モデルの性能を大幅に向上させる。
論文 参考訳(メタデータ) (2022-03-14T11:17:48Z) - Single-Modal Entropy based Active Learning for Visual Question Answering [75.1682163844354]
視覚質問応答(VQA)のマルチモーダル設定におけるアクティブラーニングに対処する
マルチモーダルな入力,画像,質問を考慮し,有効サンプル取得のための新しい手法を提案する。
私たちの新しいアイデアは、実装が簡単で、コスト効率が高く、他のマルチモーダルタスクにも容易に適応できます。
論文 参考訳(メタデータ) (2021-10-21T05:38:45Z) - Visual Adversarial Imitation Learning using Variational Models [60.69745540036375]
逆関数仕様は、深い強化学習を通しての学習行動にとって大きな障害であり続けている。
望ましい行動の視覚的なデモンストレーションは、エージェントを教えるためのより簡単で自然な方法を示すことが多い。
変動モデルに基づく対向的模倣学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-07-16T00:15:18Z) - Multi-Pretext Attention Network for Few-shot Learning with
Self-supervision [37.6064643502453]
補助的なサンプルに依存しない自己教師付き学習のための,新しい拡張不要な手法を提案する。
さらに,従来の拡張信頼手法とGCを組み合わせるために,特定の注意機構を利用するマルチテキスト注意ネットワーク(MAN)を提案する。
miniImageNetおよびtieredImageNetデータセット上でMANを幅広く評価し、提案手法が最新(SOTA)関連手法より優れていることを実証した。
論文 参考訳(メタデータ) (2021-03-10T10:48:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。