論文の概要: Sparse Centroid-Encoder: A Nonlinear Model for Feature Selection
- arxiv url: http://arxiv.org/abs/2201.12910v1
- Date: Sun, 30 Jan 2022 20:46:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-01 15:41:04.372898
- Title: Sparse Centroid-Encoder: A Nonlinear Model for Feature Selection
- Title(参考訳): Sparse Centroid-Encoder: 特徴選択のための非線形モデル
- Authors: Tomojit Ghosh and Michael Kirby
- Abstract要約: 我々はCentro Sparseid-Encoderと呼ばれる非線形データ削減と可視化のためのCentroid-Encoderのスパース実装を開発した。
また、各特徴をその発生によってランク付けする特徴選択フレームワークも提供し、検証セットを用いて最適な特徴数を選択する。
このアルゴリズムは、単細胞生物データ、高次元感染症データ、ハイパースペクトルデータ、画像データ、音声データを含む幅広いデータセットに適用される。
- 参考スコア(独自算出の注目度): 1.2487990897680423
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We develop a sparse optimization problem for the determination of the total
set of features that discriminate two or more classes. This is a sparse
implementation of the centroid-encoder for nonlinear data reduction and
visualization called Sparse Centroid-Encoder (SCE). We also provide a feature
selection framework that first ranks each feature by its occurrence, and the
optimal number of features is chosen using a validation set. The algorithm is
applied to a wide variety of data sets including, single-cell biological data,
high dimensional infectious disease data, hyperspectral data, image data, and
speech data. We compared our method to various state-of-the-art feature
selection techniques, including two neural network-based models (DFS, and
LassoNet), Sparse SVM, and Random Forest. We empirically showed that SCE
features produced better classification accuracy on the unseen test data, often
with fewer features.
- Abstract(参考訳): 2つ以上のクラスを識別する特徴の合計集合を決定するための疎最適化問題を開発した。
これは、Sparse Centroid-Encoder (SCE)と呼ばれる非線形データ削減と可視化のためのCentroid-Encoderのスパース実装である。
また、各特徴をその発生によってランク付けする特徴選択フレームワークも提供し、検証セットを用いて最適な特徴数を選択する。
このアルゴリズムは、単細胞生物データ、高次元感染症データ、ハイパースペクトルデータ、画像データ、音声データを含む幅広いデータセットに適用される。
提案手法を,2つのニューラルネットワークベースモデル(DFS,LassoNet),スパースSVM,ランダムフォレストなど,最先端の機能選択手法と比較した。
実験により,SCE の機能は未確認の試験データに対して,少ない特徴でより正確な分類精度が得られた。
関連論文リスト
- Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
我々はLSC(Latent Semantic Consensus)と呼ばれる効果的な方法を提案する。
LSCは、モデルフィッティング問題をデータポイントとモデル仮説に基づく2つの潜在意味空間に定式化する。
LSCは、一般的な多構造モデルフィッティングのために、数ミリ秒以内で一貫した、信頼性の高いソリューションを提供することができる。
論文 参考訳(メタデータ) (2024-03-11T05:35:38Z) - Compact NSGA-II for Multi-objective Feature Selection [0.24578723416255746]
特徴選択を,分類精度を最大化し,選択した特徴数の最小化を目的とした多目的バイナリ最適化タスクとして定義する。
最適な特徴を選択するために,2進圧縮型NSGA-II (CNSGA-II) アルゴリズムを提案する。
我々の知る限りでは、これは特徴選択のために提案された最初のコンパクトな多目的アルゴリズムである。
論文 参考訳(メタデータ) (2024-02-20T01:10:12Z) - DsDm: Model-Aware Dataset Selection with Datamodels [81.01744199870043]
標準的なプラクティスは、データ品質という人間の考え方にマッチする例をフィルタリングすることです。
質の高い"データソースとの類似性に応じた選択は、ランダムに選択するデータに比べてパフォーマンスが向上しない(さらに傷つく)可能性がある。
我々のフレームワークは、データ品質に関する手作業による概念を回避し、学習プロセスがターゲットタスクの予測にデータポイントをトレーニングする方法を明確にモデル化する。
論文 参考訳(メタデータ) (2024-01-23T17:22:00Z) - Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
半教師付き学習(SSL)は大規模3Dシーン理解のための活発な研究課題である。
既存のSSLベースのメソッドは、クラス不均衡とポイントクラウドデータのロングテール分布による厳しいトレーニングバイアスに悩まされている。
本稿では,特徴表現学習と分類器を別の最適化方法で切り離してバイアス決定境界を効果的にシフトする,新しいデカップリング最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-13T04:16:40Z) - Feature Selection using Sparse Adaptive Bottleneck Centroid-Encoder [1.2487990897680423]
2つ以上のクラスで識別される特徴を決定するために,新しい非線形モデル SABCE (Sparse Adaptive Bottleneckid-Encoder) を導入する。
このアルゴリズムは、高次元生物学的、画像、音声、加速度センサデータなど、様々な実世界のデータセットに適用される。
論文 参考訳(メタデータ) (2023-06-07T21:37:21Z) - Graph Convolutional Network-based Feature Selection for High-dimensional
and Low-sample Size Data [4.266990593059533]
本稿では,GRAph Convolutional nEtwork feature Selector (GRACES) という深層学習に基づく手法を提案する。
GRACESは、合成データセットと実世界のデータセットの両方において、他の特徴選択方法よりも優れているという実証的な証拠を実証する。
論文 参考訳(メタデータ) (2022-11-25T14:46:36Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
本稿では,CSUFS (Compactness Score) と呼ばれる高速な教師なし特徴選択手法を提案する。
提案アルゴリズムは既存のアルゴリズムよりも正確で効率的である。
論文 参考訳(メタデータ) (2022-01-31T13:01:37Z) - Optimal Data Selection: An Online Distributed View [61.31708750038692]
この問題のオンライン版と分散版のアルゴリズムを開発する。
ランダム選択法は, ランダム選択法よりも5~20%高い性能を示した。
ImageNet と MNIST の学習タスクにおいて、我々の選択方法はランダム選択よりも5-20% 高い性能を示した。
論文 参考訳(メタデータ) (2022-01-25T18:56:16Z) - Cervical Cytology Classification Using PCA & GWO Enhanced Deep Features
Selection [1.990876596716716]
子宮頸癌は世界でも最も致命的かつ一般的な疾患の1つである。
ディープラーニングと特徴選択を利用した完全自動化フレームワークを提案する。
このフレームワークは3つの公開ベンチマークデータセットで評価されている。
論文 参考訳(メタデータ) (2021-06-09T08:57:22Z) - Auto-weighted Multi-view Feature Selection with Graph Optimization [90.26124046530319]
グラフ学習に基づく新しい教師なしマルチビュー特徴選択モデルを提案する。
1) 特徴選択過程において, 異なる視点で共有されたコンセンサス類似度グラフが学習される。
各種データセットを用いた実験により,提案手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-11T03:25:25Z) - Joint Adaptive Graph and Structured Sparsity Regularization for
Unsupervised Feature Selection [6.41804410246642]
本稿では,共同適応グラフと構造付き空間正規化unsupervised feature selection (JASFS)法を提案する。
最適な機能のサブセットがグループで選択され、選択された機能の数が自動的に決定される。
8つのベンチマーク実験の結果,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2020-10-09T08:17:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。