Learning Hamiltonians of constrained mechanical systems
- URL: http://arxiv.org/abs/2201.13254v1
- Date: Mon, 31 Jan 2022 14:03:17 GMT
- Title: Learning Hamiltonians of constrained mechanical systems
- Authors: Elena Celledoni, Andrea Leone, Davide Murari, Brynjulf Owren
- Abstract summary: Hamiltonian systems are an elegant and compact formalism in classical mechanics.
We propose new approaches for the accurate approximation of the Hamiltonian function of constrained mechanical systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, there has been an increasing interest in modelling and computation
of physical systems with neural networks. Hamiltonian systems are an elegant
and compact formalism in classical mechanics, where the dynamics is fully
determined by one scalar function, the Hamiltonian. The solution trajectories
are often constrained to evolve on a submanifold of a linear vector space. In
this work, we propose new approaches for the accurate approximation of the
Hamiltonian function of constrained mechanical systems given sample data
information of their solutions. We focus on the importance of the preservation
of the constraints in the learning strategy by using both explicit Lie group
integrators and other classical schemes.
Related papers
- Learning Generalized Hamiltonians using fully Symplectic Mappings [0.32985979395737786]
Hamiltonian systems have the important property of being conservative, that is, energy is conserved throughout the evolution.
In particular Hamiltonian Neural Networks have emerged as a mechanism to incorporate structural inductive bias into the NN model.
We show that symplectic schemes are robust to noise and provide a good approximation of the system Hamiltonian when the state variables are sampled from a noisy observation.
arXiv Detail & Related papers (2024-09-17T12:45:49Z) - Coarse-Graining Hamiltonian Systems Using WSINDy [0.0]
We show that WSINDy can successfully identify a reduced Hamiltonian system in the presence of large intrinsics.
WSINDy naturally preserves the Hamiltonian structure by restricting to a trial basis of Hamiltonian vector fields.
We also provide a contribution to averaging theory by proving that first-order averaging at the level of vector fields preserves Hamiltonian structure in nearly-periodic Hamiltonian systems.
arXiv Detail & Related papers (2023-10-09T17:20:04Z) - Data-Driven Identification of Quadratic Representations for Nonlinear
Hamiltonian Systems using Weakly Symplectic Liftings [8.540823673172403]
This work is based on a lifting hypothesis, which posits that nonlinear Hamiltonian systems can be written as nonlinear systems with cubic Hamiltonians.
We propose a methodology to learn quadratic dynamical systems, enforcing the Hamiltonian structure in combination with a weakly-enforced symplectic auto-encoder.
arXiv Detail & Related papers (2023-08-02T11:26:33Z) - Learning Trajectories of Hamiltonian Systems with Neural Networks [81.38804205212425]
We propose to enhance Hamiltonian neural networks with an estimation of a continuous-time trajectory of the modeled system.
We demonstrate that the proposed integration scheme works well for HNNs, especially with low sampling rates, noisy and irregular observations.
arXiv Detail & Related papers (2022-04-11T13:25:45Z) - Learning Neural Hamiltonian Dynamics: A Methodological Overview [109.40968389896639]
Hamiltonian dynamics endows neural networks with accurate long-term prediction, interpretability, and data-efficient learning.
We systematically survey recently proposed Hamiltonian neural network models, with a special emphasis on methodologies.
arXiv Detail & Related papers (2022-02-28T22:54:39Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Simplifying Hamiltonian and Lagrangian Neural Networks via Explicit
Constraints [49.66841118264278]
We introduce a series of challenging chaotic and extended-body systems to push the limits of current approaches.
Our experiments show that Cartesian coordinates with explicit constraints lead to a 100x improvement in accuracy and data efficiency.
arXiv Detail & Related papers (2020-10-26T13:35:16Z) - Nonseparable Symplectic Neural Networks [23.77058934710737]
We propose a novel neural network architecture, Nonseparable Symplectic Neural Networks (NSSNNs)
NSSNNs uncover and embed the symplectic structure of a nonseparable Hamiltonian system from limited observation data.
We show the unique computational merits of our approach to yield long-term, accurate, and robust predictions for large-scale Hamiltonian systems.
arXiv Detail & Related papers (2020-10-23T19:50:13Z) - Hamiltonian neural networks for solving equations of motion [3.1498833540989413]
We present a Hamiltonian neural network that solves the differential equations that govern dynamical systems.
A symplectic Euler integrator requires two orders more evaluation points than the Hamiltonian network in order to achieve the same order of the numerical error.
arXiv Detail & Related papers (2020-01-29T21:48:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.