Hamiltonian neural networks for solving equations of motion
- URL: http://arxiv.org/abs/2001.11107v5
- Date: Tue, 26 Apr 2022 15:24:33 GMT
- Title: Hamiltonian neural networks for solving equations of motion
- Authors: Marios Mattheakis, David Sondak, Akshunna S. Dogra, and Pavlos
Protopapas
- Abstract summary: We present a Hamiltonian neural network that solves the differential equations that govern dynamical systems.
A symplectic Euler integrator requires two orders more evaluation points than the Hamiltonian network in order to achieve the same order of the numerical error.
- Score: 3.1498833540989413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There has been a wave of interest in applying machine learning to study
dynamical systems. We present a Hamiltonian neural network that solves the
differential equations that govern dynamical systems. This is an
equation-driven machine learning method where the optimization process of the
network depends solely on the predicted functions without using any ground
truth data. The model learns solutions that satisfy, up to an arbitrarily small
error, Hamilton's equations and, therefore, conserve the Hamiltonian
invariants. The choice of an appropriate activation function drastically
improves the predictability of the network. Moreover, an error analysis is
derived and states that the numerical errors depend on the overall network
performance. The Hamiltonian network is then employed to solve the equations
for the nonlinear oscillator and the chaotic Henon-Heiles dynamical system. In
both systems, a symplectic Euler integrator requires two orders more evaluation
points than the Hamiltonian network in order to achieve the same order of the
numerical error in the predicted phase space trajectories.
Related papers
- Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Neural Time-Reversed Generalized Riccati Equation [60.92253836775246]
Hamiltonian equations offer an interpretation of optimality through auxiliary variables known as costates.
This paper introduces a novel neural-based approach to optimal control, with the aim of working forward-in-time.
arXiv Detail & Related papers (2023-12-14T19:29:37Z) - PROSE: Predicting Operators and Symbolic Expressions using Multimodal
Transformers [5.263113622394007]
We develop a new neural network framework for predicting differential equations.
By using a transformer structure and a feature fusion approach, our network can simultaneously embed sets of solution operators for various parametric differential equations.
The network is shown to be able to handle noise in the data and errors in the symbolic representation, including noisy numerical values, model misspecification, and erroneous addition or deletion of terms.
arXiv Detail & Related papers (2023-09-28T19:46:07Z) - Applications of Machine Learning to Modelling and Analysing Dynamical
Systems [0.0]
We propose an architecture which combines existing Hamiltonian Neural Network structures into Adaptable Symplectic Recurrent Neural Networks.
This architecture is found to significantly outperform previously proposed neural networks when predicting Hamiltonian dynamics.
We show that this method works efficiently for single parameter potentials and provides accurate predictions even over long periods of time.
arXiv Detail & Related papers (2023-07-22T19:04:17Z) - DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial
Networks [1.0499611180329804]
This work presents Differential Equation GAN (DEQGAN), a novel method for solving differential equations using generative adversarial networks.
We show that DEQGAN achieves multiple orders of magnitude lower mean squared errors than PINNs.
We also show that DEQGAN achieves solution accuracies that are competitive with popular numerical methods.
arXiv Detail & Related papers (2022-09-15T06:39:47Z) - Learning Trajectories of Hamiltonian Systems with Neural Networks [81.38804205212425]
We propose to enhance Hamiltonian neural networks with an estimation of a continuous-time trajectory of the modeled system.
We demonstrate that the proposed integration scheme works well for HNNs, especially with low sampling rates, noisy and irregular observations.
arXiv Detail & Related papers (2022-04-11T13:25:45Z) - Learning Neural Hamiltonian Dynamics: A Methodological Overview [109.40968389896639]
Hamiltonian dynamics endows neural networks with accurate long-term prediction, interpretability, and data-efficient learning.
We systematically survey recently proposed Hamiltonian neural network models, with a special emphasis on methodologies.
arXiv Detail & Related papers (2022-02-28T22:54:39Z) - Learning Hamiltonians of constrained mechanical systems [0.0]
Hamiltonian systems are an elegant and compact formalism in classical mechanics.
We propose new approaches for the accurate approximation of the Hamiltonian function of constrained mechanical systems.
arXiv Detail & Related papers (2022-01-31T14:03:17Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Sparse Symplectically Integrated Neural Networks [15.191984347149667]
We introduce Sparselectically Integrated Neural Networks (SSINNs)
SSINNs are a novel model for learning Hamiltonian dynamical systems from data.
We evaluate SSINNs on four classical Hamiltonian dynamical problems.
arXiv Detail & Related papers (2020-06-10T03:33:37Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.