Higher-order quantum transformations of Hamiltonian dynamics
- URL: http://arxiv.org/abs/2303.09788v5
- Date: Tue, 14 Nov 2023 07:37:32 GMT
- Title: Higher-order quantum transformations of Hamiltonian dynamics
- Authors: Tatsuki Odake, Hl\'er Kristj\'ansson, Akihito Soeda, Mio Murao
- Abstract summary: We present a quantum algorithm to achieve higher-order transformations of Hamiltonian dynamics.
By way of example, we demonstrate the simulation of negative time-reversal, and perform a Hamiltonian learning task.
- Score: 0.8192907805418581
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a quantum algorithm to achieve higher-order transformations of
Hamiltonian dynamics. Namely, the algorithm takes as input a finite number of
queries to a black-box seed Hamiltonian dynamics to simulate a desired
Hamiltonian. Our algorithm efficiently simulates linear transformations of any
seed Hamiltonian with a bounded energy range consisting of a polynomial number
of terms in system size, making use of only controlled-Pauli gates and
time-correlated randomness. This algorithm is an instance of quantum functional
programming, where the desired function is specified as a concatenation of
higher-order quantum transformations. By way of example, we demonstrate the
simulation of negative time-evolution and time-reversal, and perform a
Hamiltonian learning task.
Related papers
- A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Quantum algorithms for Schrieffer-Wolff transformation [4.237239130164727]
The Schrieffer-Wolff transformation aims to solve degenerate perturbation problems.
It describes the low-energy dynamics of the exact Hamiltonian in the low-energy subspace of unperturbed Hamiltonian.
This unitary transformation can be realized by quantum circuits.
arXiv Detail & Related papers (2022-01-31T15:27:57Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Quantum algorithm for time-dependent Hamiltonian simulation by
permutation expansion [6.338178373376447]
We present a quantum algorithm for the dynamical simulation of time-dependent Hamiltonians.
We demonstrate that the cost of the algorithm is independent of the Hamiltonian's frequencies.
arXiv Detail & Related papers (2021-03-29T05:02:02Z) - Low-depth Hamiltonian Simulation by Adaptive Product Formula [3.050399782773013]
Various Hamiltonian simulation algorithms have been proposed to efficiently study the dynamics of quantum systems on a quantum computer.
Here, we propose an adaptive approach to construct a low-depth time evolution circuit.
Our work sheds light on practical Hamiltonian simulation with noisy-intermediate-scale-quantum devices.
arXiv Detail & Related papers (2020-11-10T18:00:42Z) - Inverse iteration quantum eigensolvers assisted with a continuous
variable [0.0]
We propose inverse iteration quantum eigensolvers, which exploit the power of quantum computing for the classical inverse power iteration method.
A key ingredient is constructing an inverse Hamiltonian as a linear combination of coherent Hamiltonian evolution.
We demonstrate the quantum algorithm with numerical simulations under finite squeezing for various physical systems.
arXiv Detail & Related papers (2020-10-07T07:31:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.