Warmth and competence in human-agent cooperation
- URL: http://arxiv.org/abs/2201.13448v4
- Date: Thu, 9 May 2024 03:02:50 GMT
- Title: Warmth and competence in human-agent cooperation
- Authors: Kevin R. McKee, Xuechunzi Bai, Susan T. Fiske,
- Abstract summary: Recent studies demonstrate that AI agents trained with deep reinforcement learning are capable of collaborating with humans.
We train deep reinforcement learning agents in Coins, a two-player social dilemma.
Participants' perceptions of warmth and competence predict their stated preferences for different agents.
- Score: 0.7237068561453082
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interaction and cooperation with humans are overarching aspirations of artificial intelligence (AI) research. Recent studies demonstrate that AI agents trained with deep reinforcement learning are capable of collaborating with humans. These studies primarily evaluate human compatibility through "objective" metrics such as task performance, obscuring potential variation in the levels of trust and subjective preference that different agents garner. To better understand the factors shaping subjective preferences in human-agent cooperation, we train deep reinforcement learning agents in Coins, a two-player social dilemma. We recruit $N = 501$ participants for a human-agent cooperation study and measure their impressions of the agents they encounter. Participants' perceptions of warmth and competence predict their stated preferences for different agents, above and beyond objective performance metrics. Drawing inspiration from social science and biology research, we subsequently implement a new ``partner choice'' framework to elicit revealed preferences: after playing an episode with an agent, participants are asked whether they would like to play the next episode with the same agent or to play alone. As with stated preferences, social perception better predicts participants' revealed preferences than does objective performance. Given these results, we recommend human-agent interaction researchers routinely incorporate the measurement of social perception and subjective preferences into their studies.
Related papers
- Mixed-Initiative Human-Robot Teaming under Suboptimality with Online Bayesian Adaptation [0.6591036379613505]
We develop computational modeling and optimization techniques for enhancing the performance of suboptimal human-agent teams.
We adopt an online Bayesian approach that enables a robot to infer people's willingness to comply with its assistance in a sequential decision-making game.
Our user studies show that user preferences and team performance indeed vary with robot intervention styles.
arXiv Detail & Related papers (2024-03-24T14:38:18Z) - Enhancing Human Experience in Human-Agent Collaboration: A
Human-Centered Modeling Approach Based on Positive Human Gain [18.968232976619912]
We propose a "human-centered" modeling scheme for collaborative AI agents.
We expect that agents should learn to enhance the extent to which humans achieve these goals while maintaining agents' original abilities.
We evaluate the RLHG agent in the popular Multi-player Online Battle Arena (MOBA) game, Honor of Kings.
arXiv Detail & Related papers (2024-01-28T05:05:57Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
We propose AgentCF for simulating user-item interactions in recommender systems through agent-based collaborative filtering.
We creatively consider not only users but also items as agents, and develop a collaborative learning approach that optimize both kinds of agents together.
Overall, the optimized agents exhibit diverse interaction behaviors within our framework, including user-item, user-user, item-item, and collective interactions.
arXiv Detail & Related papers (2023-10-13T16:37:14Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - Incorporating Rivalry in Reinforcement Learning for a Competitive Game [65.2200847818153]
This work proposes a novel reinforcement learning mechanism based on the social impact of rivalry behavior.
Our proposed model aggregates objective and social perception mechanisms to derive a rivalry score that is used to modulate the learning of artificial agents.
arXiv Detail & Related papers (2022-08-22T14:06:06Z) - Assessing Human Interaction in Virtual Reality With Continually Learning
Prediction Agents Based on Reinforcement Learning Algorithms: A Pilot Study [6.076137037890219]
We investigate how the interaction between a human and a continually learning prediction agent develops as the agent develops competency.
We develop a virtual reality environment and a time-based prediction task wherein learned predictions from a reinforcement learning (RL) algorithm augment human predictions.
Our findings suggest that human trust of the system may be influenced by early interactions with the agent, and that trust in turn affects strategic behaviour.
arXiv Detail & Related papers (2021-12-14T22:46:44Z) - ToM2C: Target-oriented Multi-agent Communication and Cooperation with
Theory of Mind [18.85252946546942]
Theory of Mind (ToM) builds socially intelligent agents who are able to communicate and cooperate effectively.
We demonstrate the idea in two typical target-oriented multi-agent tasks: cooperative navigation and multi-sensor target coverage.
arXiv Detail & Related papers (2021-10-15T18:29:55Z) - Imitating Interactive Intelligence [24.95842455898523]
We study how to design artificial agents that can interact naturally with humans using the simplification of a virtual environment.
To build agents that can robustly interact with humans, we would ideally train them while they interact with humans.
We use ideas from inverse reinforcement learning to reduce the disparities between human-human and agent-agent interactive behaviour.
arXiv Detail & Related papers (2020-12-10T13:55:47Z) - Incorporating Rivalry in Reinforcement Learning for a Competitive Game [65.2200847818153]
This study focuses on providing a novel learning mechanism based on a rivalry social impact.
Based on the concept of competitive rivalry, our analysis aims to investigate if we can change the assessment of these agents from a human perspective.
arXiv Detail & Related papers (2020-11-02T21:54:18Z) - Watch-And-Help: A Challenge for Social Perception and Human-AI
Collaboration [116.28433607265573]
We introduce Watch-And-Help (WAH), a challenge for testing social intelligence in AI agents.
In WAH, an AI agent needs to help a human-like agent perform a complex household task efficiently.
We build VirtualHome-Social, a multi-agent household environment, and provide a benchmark including both planning and learning based baselines.
arXiv Detail & Related papers (2020-10-19T21:48:31Z) - Learning to Incentivize Other Learning Agents [73.03133692589532]
We show how to equip RL agents with the ability to give rewards directly to other agents, using a learned incentive function.
Such agents significantly outperform standard RL and opponent-shaping agents in challenging general-sum Markov games.
Our work points toward more opportunities and challenges along the path to ensure the common good in a multi-agent future.
arXiv Detail & Related papers (2020-06-10T20:12:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.