Experimental Exploration: Investigating Cooperative Interaction Behavior Between Humans and Large Language Model Agents
- URL: http://arxiv.org/abs/2503.07320v1
- Date: Mon, 10 Mar 2025 13:37:36 GMT
- Title: Experimental Exploration: Investigating Cooperative Interaction Behavior Between Humans and Large Language Model Agents
- Authors: Guanxuan Jiang, Yuyang Wang, Pan Hui,
- Abstract summary: This study investigates human cooperative behavior by engaging 30 participants in repeated Prisoner's Dilemma games.<n>Findings show significant differences in cooperative behavior based on the agents' purported characteristics and the interaction effect of participants' genders and purported characteristics.<n>The study underscores the importance of understanding human biases toward AI agents and how observed behaviors can influence future human-AI cooperation dynamics.
- Score: 11.080802144327176
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rise of large language models (LLMs), AI agents as autonomous decision-makers present significant opportunities and challenges for human-AI cooperation. While many studies have explored human cooperation with AI as tools, the role of LLM-augmented autonomous agents in competitive-cooperative interactions remains under-examined. This study investigates human cooperative behavior by engaging 30 participants who interacted with LLM agents exhibiting different characteristics (purported human, purported rule-based AI agent, and LLM agent) in repeated Prisoner's Dilemma games. Findings show significant differences in cooperative behavior based on the agents' purported characteristics and the interaction effect of participants' genders and purported characteristics. We also analyzed human response patterns, including game completion time, proactive favorable behavior, and acceptance of repair efforts. These insights offer a new perspective on human interactions with LLM agents in competitive cooperation contexts, such as virtual avatars or future physical entities. The study underscores the importance of understanding human biases toward AI agents and how observed behaviors can influence future human-AI cooperation dynamics.
Related papers
- Human-AI Collaboration: Trade-offs Between Performance and Preferences [5.172575113585139]
We show that agents who are more considerate of human actions are preferred over purely performance-maximizing agents.<n>We find evidence for inequality-aversion effects being a driver of human choices, suggesting that people prefer collaborative agents which allow them to meaningfully contribute to the team.
arXiv Detail & Related papers (2025-02-28T23:50:14Z) - Collaborative Gym: A Framework for Enabling and Evaluating Human-Agent Collaboration [51.452664740963066]
Collaborative Gym is a framework enabling asynchronous, tripartite interaction among agents, humans, and task environments.
We instantiate Co-Gym with three representative tasks in both simulated and real-world conditions.
Our findings reveal that collaborative agents consistently outperform their fully autonomous counterparts in task performance.
arXiv Detail & Related papers (2024-12-20T09:21:15Z) - Multi-agent cooperation through learning-aware policy gradients [53.63948041506278]
Self-interested individuals often fail to cooperate, posing a fundamental challenge for multi-agent learning.
We present the first unbiased, higher-derivative-free policy gradient algorithm for learning-aware reinforcement learning.
We derive from the iterated prisoner's dilemma a novel explanation for how and when cooperation arises among self-interested learning-aware agents.
arXiv Detail & Related papers (2024-10-24T10:48:42Z) - Mutual Theory of Mind in Human-AI Collaboration: An Empirical Study with LLM-driven AI Agents in a Real-time Shared Workspace Task [56.92961847155029]
Theory of Mind (ToM) significantly impacts human collaboration and communication as a crucial capability to understand others.
Mutual Theory of Mind (MToM) arises when AI agents with ToM capability collaborate with humans.
We find that the agent's ToM capability does not significantly impact team performance but enhances human understanding of the agent.
arXiv Detail & Related papers (2024-09-13T13:19:48Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - Multi-Agent, Human-Agent and Beyond: A Survey on Cooperation in Social Dilemmas [15.785674974107204]
The study of cooperation within social dilemmas has long been a fundamental topic across various disciplines.
Recent advancements in Artificial Intelligence have significantly reshaped this field.
This survey examines three key areas at the intersection of AI and cooperation in social dilemmas.
arXiv Detail & Related papers (2024-02-27T07:31:30Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
We introduce the problem of Large Language Models (LLMs)-based human-agent collaboration for complex task-solving.
We propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC.
This approach includes a policy model designed to determine the most opportune stages for human intervention within the task-solving process.
arXiv Detail & Related papers (2024-02-20T11:03:36Z) - AntEval: Evaluation of Social Interaction Competencies in LLM-Driven
Agents [65.16893197330589]
Large Language Models (LLMs) have demonstrated their ability to replicate human behaviors across a wide range of scenarios.
However, their capability in handling complex, multi-character social interactions has yet to be fully explored.
We introduce the Multi-Agent Interaction Evaluation Framework (AntEval), encompassing a novel interaction framework and evaluation methods.
arXiv Detail & Related papers (2024-01-12T11:18:00Z) - The Machine Psychology of Cooperation: Can GPT models operationalise prompts for altruism, cooperation, competitiveness and selfishness in economic games? [0.0]
We investigated the capability of the GPT-3.5 large language model (LLM) to operationalize natural language descriptions of cooperative, competitive, altruistic, and self-interested behavior.
We used a prompt to describe the task environment using a similar protocol to that used in experimental psychology studies with human subjects.
Our results provide evidence that LLMs can, to some extent, translate natural language descriptions of different cooperative stances into corresponding descriptions of appropriate task behaviour.
arXiv Detail & Related papers (2023-05-13T17:23:16Z) - Improving Grounded Language Understanding in a Collaborative Environment
by Interacting with Agents Through Help Feedback [42.19685958922537]
We argue that human-AI collaboration should be interactive, with humans monitoring the work of AI agents and providing feedback that the agent can understand and utilize.
In this work, we explore these directions using the challenging task defined by the IGLU competition, an interactive grounded language understanding task in a MineCraft-like world.
arXiv Detail & Related papers (2023-04-21T05:37:59Z) - Assessing Human Interaction in Virtual Reality With Continually Learning
Prediction Agents Based on Reinforcement Learning Algorithms: A Pilot Study [6.076137037890219]
We investigate how the interaction between a human and a continually learning prediction agent develops as the agent develops competency.
We develop a virtual reality environment and a time-based prediction task wherein learned predictions from a reinforcement learning (RL) algorithm augment human predictions.
Our findings suggest that human trust of the system may be influenced by early interactions with the agent, and that trust in turn affects strategic behaviour.
arXiv Detail & Related papers (2021-12-14T22:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.