Single Time-scale Actor-critic Method to Solve the Linear Quadratic
Regulator with Convergence Guarantees
- URL: http://arxiv.org/abs/2202.00048v1
- Date: Mon, 31 Jan 2022 19:20:40 GMT
- Title: Single Time-scale Actor-critic Method to Solve the Linear Quadratic
Regulator with Convergence Guarantees
- Authors: Mo Zhou, Jianfeng Lu
- Abstract summary: We propose a single time-scale actor-critic algorithm to solve the linear quadratic regulator (LQR) problem.
A least squares temporal difference (LSTD) method is applied to the critic and a natural policy gradient method is used for the actor.
- Score: 12.884132885360907
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a single time-scale actor-critic algorithm to solve the linear
quadratic regulator (LQR) problem. A least squares temporal difference (LSTD)
method is applied to the critic and a natural policy gradient method is used
for the actor. We give a proof of convergence with sample complexity
$\mO(\ve^{-1} \log(\ve^{-1})^2)$. The method in the proof is applicable to
general single time-scale bilevel optimization problem. We also numerically
validate our theoretical results on the convergence.
Related papers
- A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
In this work, we present a robust phase retrieval problem where the task is to recover an unknown signal.
Our proposed oracle avoids the need for computationally spectral descent, using a simple gradient step and outliers.
arXiv Detail & Related papers (2024-09-07T06:37:23Z) - Min-Max Optimization Made Simple: Approximating the Proximal Point
Method via Contraction Maps [77.8999425439444]
We present a first-order method that admits near-optimal convergence rates for convex/concave min-max problems.
Our work is based on the fact that the update rule of the Proximal Point method can be approximated up to accuracy.
arXiv Detail & Related papers (2023-01-10T12:18:47Z) - Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee [86.05440220344755]
We propose and analyze inexact regularized Newton-type methods for finding a global saddle point of emphcon unconstrained min-max optimization problems.
We show that the proposed methods generate iterates that remain within a bounded set and that the iterations converge to an $epsilon$-saddle point within $O(epsilon-2/3)$ in terms of a restricted function.
arXiv Detail & Related papers (2022-10-23T21:24:37Z) - Accelerated Single-Call Methods for Constrained Min-Max Optimization [5.266784779001398]
Existing methods either require two gradient calls or two projections in each iteration, which may costly in some applications.
In this paper, we first show that a variant of the Optimistic Gradient (RGOG) has a rich set of non-comonrate min-max convergence rate problems.
Our convergence rates hold for standard measures such as and the natural and the natural.
arXiv Detail & Related papers (2022-10-06T17:50:42Z) - Global Convergence of Two-timescale Actor-Critic for Solving Linear
Quadratic Regulator [43.13238243240668]
We develop a new analysis framework that allows establishing the global convergence to an $epsilon$-optimal solution.
This is the first finite-time convergence analysis for the single sample two-timescale AC for solving LQR with global optimality.
arXiv Detail & Related papers (2022-08-18T09:57:03Z) - Finite-Time Complexity of Online Primal-Dual Natural Actor-Critic Algorithm for Constrained Markov Decision Processes [13.908826484332282]
We study an online primal-dual actor-critic method to solve a discounted cost constrained Markov decision process problem.
This paper is the first to study the finite-time complexity of an online primal-dual actor-critic method for solving a CMDP problem.
arXiv Detail & Related papers (2021-10-21T18:05:40Z) - Variance-Reduced Off-Policy TDC Learning: Non-Asymptotic Convergence
Analysis [27.679514676804057]
We develop a variance reduction scheme for the two time-scale TDC algorithm in the off-policy setting.
Experiments demonstrate that the proposed variance-reduced TDC achieves a smaller convergence error than both the conventional TDC and the variance-reduced TD.
arXiv Detail & Related papers (2020-10-26T01:33:05Z) - Provably Convergent Working Set Algorithm for Non-Convex Regularized
Regression [0.0]
This paper proposes a working set algorithm for non-regular regularizers with convergence guarantees.
Our results demonstrate high gain compared to the full problem solver for both block-coordinates or a gradient solver.
arXiv Detail & Related papers (2020-06-24T07:40:31Z) - Non-asymptotic Convergence Analysis of Two Time-scale (Natural)
Actor-Critic Algorithms [58.57004511121862]
Actor-critic (AC) and natural actor-critic (NAC) algorithms are often executed in two ways for finding optimal policies.
We show that two time-scale AC requires the overall sample complexity at the order of $mathcalO(epsilon-2.5log3(epsilon-1))$ to attain an $epsilon$-accurate stationary point.
We develop novel techniques for bounding the bias error of the actor due to dynamically changing Markovian sampling.
arXiv Detail & Related papers (2020-05-07T15:42:31Z) - A Finite Time Analysis of Two Time-Scale Actor Critic Methods [87.69128666220016]
We provide a non-asymptotic analysis for two time-scale actor-critic methods under non-i.i.d. setting.
We prove that the actor-critic method is guaranteed to find a first-order stationary point.
This is the first work providing finite-time analysis and sample complexity bound for two time-scale actor-critic methods.
arXiv Detail & Related papers (2020-05-04T09:45:18Z) - Second-order Conditional Gradient Sliding [79.66739383117232]
We present the emphSecond-Order Conditional Gradient Sliding (SOCGS) algorithm.
The SOCGS algorithm converges quadratically in primal gap after a finite number of linearly convergent iterations.
It is useful when the feasible region can only be accessed efficiently through a linear optimization oracle.
arXiv Detail & Related papers (2020-02-20T17:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.