論文の概要: Self-supervised Graphs for Audio Representation Learning with Limited
Labeled Data
- arxiv url: http://arxiv.org/abs/2202.00097v1
- Date: Mon, 31 Jan 2022 21:32:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-02 15:35:40.465616
- Title: Self-supervised Graphs for Audio Representation Learning with Limited
Labeled Data
- Title(参考訳): 限定ラベルデータを用いた音声表現学習のための自己教師付きグラフ
- Authors: Amir Shirian, Krishna Somandepalli, Tanaya Guha
- Abstract要約: サブグラフは、ラベル付きオーディオサンプルとラベルなしオーディオサンプルの関係を利用するために、利用可能なトレーニングデータのプール全体をサンプリングすることによって構築される。
我々は,3つのベンチマーク音声データベースと,音響事象検出と音声感情認識の2つのタスクについて,そのモデルを評価する。
我々のモデルはコンパクト(240kパラメータ)であり、様々な種類の信号ノイズに対して堅牢な一般化された音声表現を生成することができる。
- 参考スコア(独自算出の注目度): 24.608764078208953
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large scale databases with high-quality manual annotations are scarce in
audio domain. We thus explore a self-supervised graph approach to learning
audio representations from highly limited labelled data. Considering each audio
sample as a graph node, we propose a subgraph-based framework with novel
self-supervision tasks that can learn effective audio representations. During
training, subgraphs are constructed by sampling the entire pool of available
training data to exploit the relationship between the labelled and unlabeled
audio samples. During inference, we use random edges to alleviate the overhead
of graph construction. We evaluate our model on three benchmark audio
databases, and two tasks: acoustic event detection and speech emotion
recognition. Our semi-supervised model performs better or on par with fully
supervised models and outperforms several competitive existing models. Our
model is compact (240k parameters), and can produce generalized audio
representations that are robust to different types of signal noise.
- Abstract(参考訳): 高品質な手動アノテーションを備えた大規模データベースは、オーディオドメインでは不十分である。
そこで我々は,高度に制限されたラベル付きデータから音声表現を学ぶための自己教師付きグラフアプローチを検討する。
それぞれの音声サンプルをグラフノードとして考慮し,効率的な音声表現を学習可能な,新たな自己監督タスクを備えたサブグラフベースのフレームワークを提案する。
トレーニング中は、ラベル付きオーディオサンプルとラベルなしオーディオサンプルの関係を利用するために、利用可能なトレーニングデータのプール全体をサンプリングすることで、サブグラフを構築する。
推論中、グラフ構築のオーバーヘッドを軽減するためにランダムエッジを使用します。
我々は,3つのベンチマーク音声データベースと,音響事象検出と音声感情認識の2つのタスクについて,そのモデルを評価する。
我々の半教師付きモデルは、完全教師付きモデルと同等あるいは同等に機能し、いくつかの競争力のある既存モデルより優れている。
私たちのモデルはコンパクト(240kパラメータ)で、異なる種類の信号ノイズにロバストな一般化オーディオ表現を生成できる。
関連論文リスト
- AV-SUPERB: A Multi-Task Evaluation Benchmark for Audio-Visual Representation Models [92.92233932921741]
AV-SUPERBベンチマークは,音声・視覚・バイモーダル融合表現の汎用的評価を可能にする。
我々は,最近の5つの自己教師型モデルを評価し,これらのモデルがすべてのタスクに一般化されないことを示す。
我々は,AudioSetを用いた中間タスクの微調整と音声イベント分類によって表現が改善されることを実証した。
論文 参考訳(メタデータ) (2023-09-19T17:35:16Z) - Self-Supervised Visual Acoustic Matching [63.492168778869726]
音響マッチングは、ターゲットの音響環境に録音されたかのように、音声クリップを再合成することを目的としている。
そこで本研究では,対象のシーン画像と音声のみを含む,視覚的音響マッチングのための自己教師型アプローチを提案する。
提案手法は,条件付きGANフレームワークと新しいメトリクスを用いて,室内音響をアンタングル化し,音をターゲット環境に再合成する方法を共同で学習する。
論文 参考訳(メタデータ) (2023-07-27T17:59:59Z) - Anomalous Sound Detection using Audio Representation with Machine ID
based Contrastive Learning Pretraining [52.191658157204856]
コントラスト学習を用いて、各音声サンプルではなく、各機械IDの音声表現を洗練する。
提案手法では、コントラスト学習を用いて音声表現モデルを事前学習する。
実験の結果,本手法はコントラスト学習や自己教師型分類を用いて最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-04-07T11:08:31Z) - Unraveling Instance Associations: A Closer Look for Audio-Visual Segmentation [18.001730255429347]
オーディオ視覚セグメント化(AVS)は、音声視覚キューに基づいて、正確に音を分割する作業である。
我々は,難易度と比較的偏りのない高画質な視覚的セグメンテーション・ベンチマークを構築するための新たなコスト効率戦略を提案する。
既存のAVSデータセットおよび我々の新しいベンチマークで行った実験により、我々の手法は最先端(SOTA)セグメンテーションの精度を達成できた。
論文 参考訳(メタデータ) (2023-04-06T09:54:06Z) - SLICER: Learning universal audio representations using low-resource
self-supervised pre-training [53.06337011259031]
ラベルなし音声データに事前学習エンコーダを組み込むための自己指導型学習手法を提案する。
我々の主な目的は、多種多様な音声および非音声タスクにまたがる一般化が可能な音声表現を学習することである。
論文 参考訳(メタデータ) (2022-11-02T23:45:33Z) - A Single Self-Supervised Model for Many Speech Modalities Enables
Zero-Shot Modality Transfer [31.028408352051684]
マルチモーダル音声と非モーダル音声の両方を活用できる自己教師型事前学習フレームワークであるu-HuBERTを提案する。
LRS3では1.2%/1.4%/27.2%の音声認識単語誤り率を示す。
論文 参考訳(メタデータ) (2022-07-14T16:21:33Z) - Automatic Curation of Large-Scale Datasets for Audio-Visual
Representation Learning [62.47593143542552]
本稿では,自動データセットキュレーションのためのサブセット最適化手法について述べる。
本研究では,高視聴覚対応の映像を抽出し,自己監視モデルが自動的に構築されているにもかかわらず,既存のスケールのビデオデータセットと類似したダウンストリームパフォーマンスを達成できることを実証した。
論文 参考訳(メタデータ) (2021-01-26T14:27:47Z) - A Framework for Generative and Contrastive Learning of Audio
Representations [2.8935588665357077]
本研究では,音声表現のためのコントラスト学習フレームワークを提案する。
また、音声信号の潜在空間を学習するために、アートトランスフォーマーに基づくアーキテクチャの状態に基づく生成モデルについても検討する。
本システムは,ニューラルネットワークモデルをトレーニングするために,地上の真理ラベルにアクセス可能な完全教師付き手法と比較して,かなりの性能を実現している。
論文 参考訳(メタデータ) (2020-10-22T05:52:32Z) - COALA: Co-Aligned Autoencoders for Learning Semantically Enriched Audio
Representations [32.456824945999465]
本稿では,学習した音声とその関連タグの潜在表現を調整し,音声表現を学習する手法を提案する。
組込みモデルの性能評価を行い,その性能を3つの異なるタスクにおける特徴抽出器として評価した。
論文 参考訳(メタデータ) (2020-06-15T13:17:18Z) - High-Fidelity Audio Generation and Representation Learning with Guided
Adversarial Autoencoder [2.6770746621108654]
GAAE(Guided Adversarial Autoencoder)と呼ばれる新しいオートエンコーダモデルを提案する。
提案モデルでは,実際の音響サンプルと区別できない品質の音声を生成できる。
論文 参考訳(メタデータ) (2020-06-01T12:19:32Z) - Audio ALBERT: A Lite BERT for Self-supervised Learning of Audio
Representation [51.37980448183019]
本稿では,自己教師型音声表現モデルの簡易版であるAudio ALBERTを提案する。
我々は、Audio ALBERTが、下流タスクにおいて、これらの巨大なモデルと競合する性能を達成することができることを示す。
探索実験において、潜在表現は、最後の層よりも音素と話者のリッチな情報をエンコードすることがわかった。
論文 参考訳(メタデータ) (2020-05-18T10:42:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。