Fortuitous Forgetting in Connectionist Networks
- URL: http://arxiv.org/abs/2202.00155v1
- Date: Tue, 1 Feb 2022 00:15:58 GMT
- Title: Fortuitous Forgetting in Connectionist Networks
- Authors: Hattie Zhou, Ankit Vani, Hugo Larochelle, Aaron Courville
- Abstract summary: We introduce "forget-and-relearn" as a powerful paradigm for shaping the learning trajectories of artificial neural networks.
The forget-and-relearn framework unifies many existing iterative training algorithms in the image classification and language emergence literature.
We leverage this understanding to improve upon existing algorithms by designing more targeted forgetting operations.
- Score: 20.206607130719696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forgetting is often seen as an unwanted characteristic in both human and
machine learning. However, we propose that forgetting can in fact be favorable
to learning. We introduce "forget-and-relearn" as a powerful paradigm for
shaping the learning trajectories of artificial neural networks. In this
process, the forgetting step selectively removes undesirable information from
the model, and the relearning step reinforces features that are consistently
useful under different conditions. The forget-and-relearn framework unifies
many existing iterative training algorithms in the image classification and
language emergence literature, and allows us to understand the success of these
algorithms in terms of the disproportionate forgetting of undesirable
information. We leverage this understanding to improve upon existing algorithms
by designing more targeted forgetting operations. Insights from our analysis
provide a coherent view on the dynamics of iterative training in neural
networks and offer a clear path towards performance improvements.
Related papers
- RESTOR: Knowledge Recovery through Machine Unlearning [71.75834077528305]
Large language models trained on web-scale corpora can memorize undesirable datapoints.
Many machine unlearning methods have been proposed that aim to 'erase' these datapoints from trained models.
We propose the RESTOR framework for machine unlearning based on the following dimensions.
arXiv Detail & Related papers (2024-10-31T20:54:35Z) - A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learning is a novel unified framework for learning with neural networks "over time"
It is based on differential equations that: (i) can be integrated without the need of external software solvers; (ii) generalize the well-established notion of gradient-based learning in feed-forward and recurrent networks; (iii) open to novel perspectives.
arXiv Detail & Related papers (2024-09-18T14:57:13Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Continual Learning with Deep Streaming Regularized Discriminant Analysis [0.0]
We propose a streaming version of regularized discriminant analysis as a solution to this challenge.
We combine our algorithm with a convolutional neural network and demonstrate that it outperforms both batch learning and existing streaming learning algorithms.
arXiv Detail & Related papers (2023-09-15T12:25:42Z) - Understanding Self-Predictive Learning for Reinforcement Learning [61.62067048348786]
We study the learning dynamics of self-predictive learning for reinforcement learning.
We propose a novel self-predictive algorithm that learns two representations simultaneously.
arXiv Detail & Related papers (2022-12-06T20:43:37Z) - Being Friends Instead of Adversaries: Deep Networks Learn from Data
Simplified by Other Networks [23.886422706697882]
A different idea has been recently proposed, named Friendly Training, which consists in altering the input data by adding an automatically estimated perturbation.
We revisit and extend this idea inspired by the effectiveness of neural generators in the context of Adversarial Machine Learning.
We propose an auxiliary multi-layer network that is responsible of altering the input data to make them easier to be handled by the classifier.
arXiv Detail & Related papers (2021-12-18T16:59:35Z) - Wide Neural Networks Forget Less Catastrophically [39.907197907411266]
We study the impact of "width" of the neural network architecture on catastrophic forgetting.
We study the learning dynamics of the network from various perspectives.
arXiv Detail & Related papers (2021-10-21T23:49:23Z) - Reasoning-Modulated Representations [85.08205744191078]
We study a common setting where our task is not purely opaque.
Our approach paves the way for a new class of data-efficient representation learning.
arXiv Detail & Related papers (2021-07-19T13:57:13Z) - Self-Adaptive Training: Bridging the Supervised and Self-Supervised
Learning [16.765461276790944]
Self-adaptive training is a unified training algorithm that dynamically calibrates and enhances training process by model predictions without incurring extra computational cost.
We analyze the training dynamics of deep networks on training data corrupted by, e.g., random noise and adversarial examples.
Our analysis shows that model predictions are able to magnify useful underlying information in data and this phenomenon occurs broadly even in the absence of emphany label information.
arXiv Detail & Related papers (2021-01-21T17:17:30Z) - Incremental Embedding Learning via Zero-Shot Translation [65.94349068508863]
Current state-of-the-art incremental learning methods tackle catastrophic forgetting problem in traditional classification networks.
We propose a novel class-incremental method for embedding network, named as zero-shot translation class-incremental method (ZSTCI)
In addition, ZSTCI can easily be combined with existing regularization-based incremental learning methods to further improve performance of embedding networks.
arXiv Detail & Related papers (2020-12-31T08:21:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.